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Abstract: Some of the main ideas of the fractal city theory 
are briefly reviewed, and their applicability is tested for the 
medium and small-size Romanian urban settlements. 
Particularly, the diffusion-limited aggregation with dendritic-
like growth (modelling The Central Place Theory of 
Christaller and Beckman) was proved to be in disagreement 
with the urban area development. Instead, the diffusion-
limited aggregation with correlated percolation and self-
organized criticality mechanisms are found to fit well the 
urban perimeter growth. Finally, the streets of a small 
Romanian town (Roman) were found to display the statistical 
structure of a scale-free network. The last model allows us to 
simulate complex phenomena like epidemic/rumour 
propagation and to find the most efficient lines of the urban 
development.  
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1. HISTORICAL FRAMEWORK 

 
 
 More than seven decades ago, Englewood Cliffs from New 

Jersey published a pioneering book by Christaller (1933), 
where several key questions were for the first time posed: 
“What type of dynamics describe the growing of the urban 
locations?” and, further: “Are there laws which determine the 
number, size and distribution of towns?” The Christaller’s 
theory – the so-called central places theory, later developed 
by Beckmann (1968), describes the urban morphology in the 
terms of the Euclidean geometry. The main idea is that the 
urban development is structured around a central business 
district. 

 The applicability of the central places theory is drastically 
limited by the exclusive using of Euclidean varieties as lines 
and surfaces. The modelling of the urban perimeter in 
Euclidean terms leads to results in strong discrepancy with 
the empirical evidence, especially for the large towns and 
cities.In the second half of the XX century, B. Mandelbrot 
(1975) opened the door for a more realistic description of the 
natural and social phenomena by introducing the 
mathematical varieties with fractional dimensions, usually 
called fractals. In the fractal theories, the dimension has a 
higher degree of generality than in Euclidean it has. 

 Cities are large physical objects animated and driven by 
human behaviour. By far the most interesting and difficult 
questions about them are about how the two connect: exactly 
how is the physical city linked to the human city? The 
consequent question is: what are the consequences of the 
physical form of the city for its human form, that is the 

patterns and dynamics of the economic, social, cultural and 
cognitive life that goes on in the city.  

 Living cities have intrinsically fractal properties, in 
common with all living systems. The pressure to 
accommodate both the automobile and increased population 
growth led twentieth-century urbanists to impose anti-fractal 
geometrical typologies. The fractal properties of the 
traditional city were erased, with disastrous consequences for 
the urban functionality.     

 As it was already shown in literature (Salingaros, 2001), 
older, pre-modernist cities are fractal, because they work on 
all scales. Mediaeval cities are the most fractal on the smaller 
scales up to 1 km, whereas 19th century cities work better on 
larger scales. Urban typologies used throughout history up 
until the twentieth century lead automatically to a fractal 
structure. But, the urban morphology is a product of the 
particular transportation system laid down by the government 
when the city was initially built. Later modifications to the 
transportation system lead to changes in city structure. 

 A city's life comes from its connectivity (Salingaros, 
1998). In the present paper we discuss the connective 
properties of several undirected graphs to gain some insight 
into how city life arises. The simplest and most studied 
network with undirected edges was introduced by Erdös and 
Rényi (ER model) (Erdös & Rényi, 1959). In this network: 

(i) the total number of vertices, N, is fixed; 
(ii) the probability that two arbitrary vertices are connected 

equals p. 
One sees that, on average, the network contains pN(N  

1)/2 edges. The degree distribution is binomial:  
 

k1Nk1N
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so the average degree is: 
    

1)p(Nk                                                                
 
For large N, the distribution described in Eq. (1) takes the 

Poisson form: 
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k)kexp(P(k)

k
  

 
Therefore, the distribution rapidly decreases at large 

degrees. Such distributions are characteristic for classical 
random networks (Dorogovtsev & Mendes, 2002). 

As we shall see in the next section, the growing networks 
often self-organize into scale-free structures. A little change 
of parameters controlling their growth removes them from the 
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class of scale-free structures. This is typical for the general 
self-organized criticality phenomena. Reasons for power-law 
distributions occurring in various systems, including urban 
systems, were a matter of interest of numerous empirical and 
theoretical studies. The models of networks growing with 
preferential linking can be reduced to the sandpile problem: at 
each increment of time, m new particles are distributed 
between the increasing number (by one per time step) of 
boxes according to some rule. Here, the boxes play the role of 
vertices. The particles are associated with edges. The 
probability that a new particle gets to a particular box depends 
on the filling of this box and on the filling numbers of all 
other boxes. 

In Subsection 2.1 we simulate the urban growth by various 
models. We find that the sandpile model and Diffusion-
Limited Aggregation (DLA model) with correlated 
percolation may fit the urban area of a small town. The 
problem of urban streets network is analysed in Subsection 
2.2. Following some statistical data, we find that for a small 
town, the scale free network (simulated by Barabasi-Albert 
model of preferential attachment) fits better the data than the 
exponential (random) network.   

The growth of a human settlement is essentially a self-
organized process. A connection between self-organized 
criticality and urban growth may be performed by formulating 
an old sociological model (the Simon model) for networks in 
terms of vertices and edges (Bernhold & Ebel, 2001). This 
approach is based on two steps: 

(i) At each increment of time, a new edge is added to the 
network. 

(ii) a) Also, with probability p a new vertex is added, and 
the target end of the new edge is attached to the vertex.  

      b) With the complementary probability 1  p, the target 
end of the new edge is attached to the target end of a 
randomly chosen old edge. 

In fact, both the original Simon model and the preferential 
linking concept are based on a quite general principle: 
popularity is attractive. Popular objects attract more new fans 
than the unpopular ones. 

  
 
 

2. RESULTS 
 
2.1 Numerical simulations of the growth process 

 
 
The simulation follows the slightly modified cellular-

automata model (Bak et al. 1987, Pica Ciamarra and Coniglio, 
2006): the model is defined on a lattice, which we take for 
simplicity to be the two dimensional square lattice. There is a 
positive integer variable at each site of the lattice, called the 
height of the sand pile at that site. The system evolves in 
discrete time. In the first version (Fig. 1), all the grains are 
initially contented into the central site; then, the grains are 
added to the neighbouring sites with a power-law decay 
probability. In the second version (Fig. 2), one starts from a 
uniform distribution of heights. At each time step a site is 
picked randomly, and its height zi is increased by unity. If the 
site height is larger than a critical value zc, the site relaxes by 
toppling whereby zc grains leave the site, and each of the four 
neighbouring sites gets zc/4 grains. In case of toppling at a site 

at the boundary of the lattice, grains falling “outside” the 
lattice are not removed from the system, but they are added 
randomly to the highest ones. This process continues until all 
sites are stable.  

As shown, in the DLA model, only a large central place or 
large cluster is generated (Fig. 1). The classical DLA model 
begins with an initial green "seed" in the center of the world. 
The particles move around the world randomly. When a 
particle hits a green square, it "sticks" and turns green (and a 
new particle is created to keep the process going). However, a 
real urban area is rather composed of central places that are 
spatially distributed following a certain hierarchy, thus the 
sand pile model (Fig. 4) offer a more realistic description of 
the urban perimeter (Fig. 3). 

Such a structure may be also simulated by DLA with 
correlated percolation (Makse et al., 1995, 1998). Like the 
main DLA model, this model demonstrates diffusion-limited 
aggregation, in which particles moving (diffusing) in random 
trajectories stick together (aggregate) to form beautiful 
treelike branching fractal structures. There are many patterns 
found in nature that resemble the patterns produced by this 
model: crystals, coral, fungi, lightning, and so on (Witten Jr. 
and Sander, 1983) 

 
 
 

 
 
 

Figure 1 A numerical simulation of a growth process in a 
dendritic-like structure, from the DLA model. The growth 
begins in the centre and extends to the periphery 

 
 

 
(a) 
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(b) 

 
Figure 2 The result of the numerical simulation of a growth 
process in the sand pile model after (a) n = 102; (b) n = 103 
simulation time steps.  

 

 
Figure 3 Structure of Roman in 2012. The residential and 
economic unit coordinates are obtained by dividing the map 
in 250 × 250 screen squares (See Ref. Roman – Interactive 
map). The surrounded zones are the ones at which the 
centrality indices (see Appendix) have the largest values. 

 

 
Figure 4 The urban growth model simulated by DLA model 
with correlated percolation. The image is provided by a 
simulation using Netlogo applet (Wilensky, 2006) with the 

parameters: wiggle-angle: 60; number of particles: 2500; 
ticks: 1221.   

  
2.2 The streets of the town.Exponential or scale-free network?    

 
The network metaphor in the analysis of urban and 

territorial cases has a long tradition especially in 
transportation /land-use planning and economic geography. 
All the previous approaches – though under different terms 
like “accessibility”, “proximity”, “integration”, “cost”,  
“connectivity”, or “effort” – focus on the idea that some 
places (or streets) are more important than others because 
they are more central (Latora and Marchiori, 2004). The study 
of centrality in complex systems, however, originated in other 
scientific areas, namely in structural sociology, well before its 
use in urban studies; moreover, as a structural property of the 
system, centrality has never been extensively investigated 
metrically in geographic networks as it has been topologically 
in a wide range of other relational networks like social, 
biological or technological (Crucitti et al., 2006).  

  Let us discuss the simplest random network in which the 
number of vertices grows (Barabasi and Albert, 1999; 
Barabasi, Albert and Jeong, 1999). At each increment of time, 
let a new vertex be added to the network. It connects to a 
randomly chosen (i.e., without any preference) old vertex. Let 
connections be undirected, although it is inessential here. The 
growth begins from the configuration consisting of two 
connected vertices at time t = 1, so, at time t, the network 
consists of t +1 vertices and t edges. The total degree equals 
2t. One can check that the average shortest-path length in this 
network is lnt  like in classical random graphs. 

It is easy to obtain the degree distribution for such a 
network. We may label vertices by their birth times, s = 

0; 1; 2; ... ; t. Let us introduce the probability, p(k; s; t), that 
a vertex s has degree k at time t. The master equation 

describing the evolution of the degree distribution of 
individual vertices is: 

 

t)s,p(k,
1t

11t)s,1,p(k
1t

11)ts,p(k, 











  

with 1,)1,0,( ktskp  , k,1δ1)tt,sδ(k,  . 
This accounts for two possibilities for a vertex s:  

(i) With probability 1/(t +1), it may get an extra edge from 
the new vertex and increase its own degree by 1.  

(ii) With the complimentary probability 1  1/(t + 1), the 
vertex s may remain in the former state with the former 
degree. Notice that the second condition above makes the 
master equation non-trivial. 

   The total degree distribution of the entire network is: 
 





t

0s
t)s,p(k,

1t
1t)P(k,  

 

Using this definition and applying  

t

0s
to both sides of 

above master equation, we get the master equation for the 
total degree distribution: 
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The corresponding stationary equation (i.e. at t  ) takes 
the form: k,1δ1)P(k2P(k)   

 

 
It has the solution of an exponential form:  

kkP  2)(  
 

 

 
 

Figure 5 The distribution of degrees for N = 71 vertices in Roman (histogram). The continuous line fits to power distribution 
(scale-free network) while the dashed line fits to the exponential (random growing network). The Pearson coefficients RSQ are 
given in inset (See Ref. Roman – Interactive map). 

 
  
At least several important large growing networks in nature 

are scale-free, i.e., their degree distributions are of a power-
law form. The natural question is how they self-organize into 
scale-free structures while growing. What is the mechanism 
responsible for such self-organization? For explanation of 
these phenomena, the idea of preferential linking (preferential 
attachment of edges to vertices) has been proposed (Barabasi 
and Albert, 1999; Barabasi, Albert and Jeong, 1999). 

We have demonstrated above that if new connections in a 
growing network appear between vertices chosen without any 
preference, e.g., between new vertices and randomly chosen 
old ones, the degree distribution is exponential. Nevertheless, 
in real networks, linking is very often preferential. 

We describe here the simplest situation: The probability that 
the edge is attached to an old vertex is proportional to the 
degree of this old vertex, i.e., to the total number of its 
connections. At time t, the total number of edges is t, and the 
total degree equals 2t. Hence, this probability equals k/(2t). 
One should emphasize that this is only a particular form of a 
preference function. 

For the BA model, the master equation takes the following 
form: 

 

t)s,p(k,
2t
k1t)s,1,p(k

2t
1k1)ts,p(k, 






 


  

 
with the initial condition k,1δ1)t0,sp(k,   and the 

boundary condition k,1δt)t,p(k,  . 

 
The master equation for total degree distribution: 

  k,1δt)kP(k,t)1,1)P(k(k
2
1t)tP(k,1)t1)P(k,(t 

 
and, in the limit t  , the equation for the stationary 

distribution: 
 

  1,)1()1()(
2
1)( kkPkkkPkP   

 
In the continuum k limit, this equation is of the form: 
 

  0)(
2
1)( 

dk
kkPdkP  

The solution of the last equation is 3kP(k)  . 
 
Thus, the preferential linking provides a scale-free network 

and the exponent of degree distribution is 3. 
An empirical study was performed on N = 71 nodes in 

Roman. The results are shown in Fig. 7.  One can easily see 
that the urban streets structure is fitted better by the scale-free 
network than the exponential network. In Fig. 8 the urban 
streets structure is simulated by preferential attachment 
mechanism.  
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Figure 6 The urban streets structure simulated by preferential 
attachment mechanism. The image is provided by a 
simulation using Netlogo applet with the parameters: number 
of nodes: 142; ticks: 146. 

 
 
 

3. CONCLUSIONS 
 
 

In the present paper some basic ideas of the fractal city 
theory have been briefly reviewed. The universality of 
intrinsic fractality has been proved once again using particular 
statistical data.    

Particularly the question of urban perimeter growth was 
pointed out. While an increasing amount of literature is 
devoted to the large cities structure and distribution, a 
relatively low interest has been so far given in the study of 
medium and small-size urban locations, especially those 
situated in the developing countries. Generally here are not 
mega-polis-like cities and the most urban centres are formed 
by merging some small units (villages). We found that self-
organized criticality (the sand pile model) fits the urban 
perimeter better than the classical Central Place Theory. 
Nonetheless, the best fit of urban area has been performed by 
means of the Diffusion-Limited Aggregation with Correlated 
Percolation (DLACP) model. 

   Finally, the urban streets network was modelled starting 
from two models: the growing exponential network and the 
scale-free network. The last was simulated by means of 
Albert-Barabasi mechanism of preferential linking and it 
seems to fit better the empirical data than the first model, at 
least for small towns. 

   The study of urban perimeter growth and urban streets 
network may be useful in order to identify the most „central” 
points of the towns as well as to predict the further 
development of the towns in terms of cost and efficiency. 
Knowing the structure of the network we can analyse, also, 
complex phenomena such as the epidemic contamination 
spreading, and the fashion/fear/rumour propagation.   

 
 
 

 
 
APPENDIX: Various centrality indices  
 
   Let us consider now N = the number of nodes/vertices in 

the streets network of the town. We consider a link as a street 
starting from an intersection situated next to the vertex. 

 
a) Degree and closeness centrality 
Degree centrality is based on the idea that important nodes 

have the largest number of ties to other nodes in the graph. 
The degree of a node is, as previously mentioned, the number 
of edges incident with the node, i.e. the number of first 
neighbours of the node. Defining the degree of node i as: 
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the degree centrality (CD) of the node i can be defined as 

(Nieminen, 1974): 
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The normalization adopted is such that CD  takes on values 

between 0 and 1, and is equal to one in the case in which a 
node is connected to all the other nodes of the graph. 

The simplest notion of closeness is based on the concept of 
minimum distance or geodesic dij, that is, the smallest sum of 
the edges lengths throughout all the possible paths in the 
graph from i to j in a weighted graph, and reduces to the 
minimum number of edges traversed, in a topologic graph. 

 
The closeness centrality of point i (Freeman, 1979) is: 
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where Li is the average distance from actor i to all the other 
actors. CC is to be used when measures based upon 
independence are desired. Such an index is particularly 
meaningful for connected graphs. 

 
b) Betweenness centrality 
Interactions between two non-adjacent points might depend 

on the other vertices, especially on those on the paths between 
the two. Therefore points in the middle can have a strategic 
control and influence on the others. The important idea at the 
base of this centrality index is that a vertex is central if it lies 
between many of the other vertices. This concept can be 
simply quantified by assuming that the communication travels 
just along geodesics. Namely, if njk is the number of 
geodesics linking the two vertices j and k, and njk (i) is the 
number of geodesics linking the two vertices j and k that 
contain point i, the betweenness centrality of actor i can be 
defined as (Freeman, 1979): 
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The betweenness centrality of the node i takes on values 
between 0 and 1, and it reaches its maximum when node i 
falls on all geodesics. 

 
c) Efficiency and Straightness centrality 
Efficiency and straightness centralities originate from the 

idea that the efficiency in the communication between two 
nodes i and j is equal to the inverse of the shortest path length 
dij (Latora and Marchiori, 2001).  
In particular, the efficiency centrality of node i is defined as: 
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where 
Eucl
ijd is the Euclidean distance between nodes i and 

j along a straight line. 
The straightness centrality is a variant of the efficiency 
centrality that originates from a different normalization 
(Vragović et al. 2005). The straightness centrality of node i is 
defined as: 
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This measure captures to which extent the connecting route 

between nodes i and j deviates from the virtual straight route. 
 
d) The overlapping index 
  Another measure of the two countries connection strength 

is the overlapping coefficient (Gligor and Ausloos, 2008) 
defined for an unweighted network as: 

 

   
2)1)(N2(N
)k(kK

O jiij
ij 


  , i  j,                                                                                               

where N is the number of vertices, ki and kj are the degrees 
of the two considered nodes, and Kij is the number of 
common neighbours. For an unweighted network, Oij does not 
account the edge directly linking i and j but rather to what 
extent the two nodes “overlap” by means of their common 
neighbours.  
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