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 Abstract. Some of the most significant points in the study of the 
“small world” (SW) effect are briefly reviewed in the first section of 
the paper, starting from the Milgram’s sociological experiment, the 
paradigm of the “six degrees of separation”, and the Watts and 
Strogatz’ model. Based on interviews and questionnaires we found 
that the pupils network, in a school with about 1,000 pupils is a SW 
network with a mean degree of separation between 2 and 3. The 
problem is important taking into account that the spread of news, 
jokes, fashions, rumour, as well as epidemics, all take place by contact 
between individuals, far faster over a social network in which the 
average degree of separation is small than it can over one in which 
the average degree is e.g. 25. The third section is theoretical. The 
statistical ensemble of networks with fixed number of vertices was 
constructed and analyzed. A probability has been assigned to each 
two-individual connection by random attachment mechanism, and the 
corresponding partition function was built. The basic thermodynamic 
quantities, namely entropy, free energy, average energy per link and 
thermal susceptibility have been defined using the partition function. 
The variation of the thermodynamic quantities have been investigated 
during a thinking process of network deconstruction, which consist of 
removing the vertices one by one, in decreasing and, respectively, 
increasing order of the overlapping coefficients. Some evidences for 
critical points have been found, the corresponding phase transitions 
being generated by removing several special vertices from the system. 
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1. INTRODUCTION 
 
1.1 Six degrees of separation 
The United Nations’ Department of Economic and Social 
Affairs estimates that the population of the world exceeded 
seven billion people in October, 2011. Perhaps the world of 
human society has become even larger nowadays. Nonetheless, 
when the people meet in an unexpected way, they often claim: 
“How small the world is!”. We demonstrate below that in a 
certain sense they are right. Despite the enormous number of 
people on the planet, the structure of social networks – the map 
of who knows whom – allows us to be all very closely 
connected to one another.  
 One of the first quantitative studies of the structure of social 
networks was performed by Stanley Milgram, then at Harvard 
University [1]. He performed a simple experiment as follows. 
He took a number of letters addressed to a stockbroker 
acquaintance of his in Boston, Massachusetts, and distributed 
them to a random selection of people in Nebraska. (Evidently, 
he considered Nebraska to be enough far from Boston, both in 
geographic and social terms). His instructions were that the 
letters were to be sent to their addresses by passing them from 
person to person, and that, in addition, they could be passed 
only to someone whom the passer new on a first-name basis. 
Since it was not likely that the initial recipients of the letters 
were on a first-name basis with a Boston stockbroker, their best 
strategy was to pass their letter to someone whom they felt was 

nearer to the stockbroker in some social sense: perhaps 
someone they knew in the financial industry, or a friend in 
Massachusetts.  A reasonable number of Milgram’s letters did 
reach their destination, and Milgram found that it had only 
taken an average of six steps for a letter to get from Nebraska 
to Boston. He concluded that six was therefore the average 
number of acquaintances separating the pairs of people 
involved, and conjectured that a similar separation might 
characterize the relationship of any two people in the entire 
world. This situation was described by the syntagm “six 
degrees of separation” [2], a phrase which has since passed into 
popular language of sociology and was intensively exploited in 
the talk-show industry [3-5].  
 Given the multiple sources of error in the Milgram’s 
experiment, one may suppose that the number six of the 
degrees is probably not a very accurate one. However, the 
general result, that two randomly chosen human beings can be 
connected by only a short chain of intermediate acquaintances 
has been subsequently verified, and is now widely accepted. In 
the jargon of the field this result is referred to as the small-
world effect.  
 Passing over the fashionable account of the phenomenon, we 
point out that the problem is crucially important for 
communications. Most human interactions take place directly 
between individuals. The spread of news, rumours, jokes, and 
fashions all take place by contact between individuals. As well, 
various diseases (from simple flues to the HIV virus) can 
spread far faster in a small world network than in a network 
where the average degree of separation is, say, ten thousand. 
That is why, during the last decade, the structure of the social 
networks and the small-world effect were extensively studied 
in literature. 
 
1.2 The terminology used in the study of networks 
The networks (or graphs) are composed of vertices (or nodes) 
connected by edges (or links). The edges may be directed or 
undirected. Correspondingly, we get a directed or a undirected 
network. To define the distances in the network, we consider 
the lengths of all edges equal to one. Here we do not consider 
networks with unit loops (edges started and terminated at the 
same vertex) and multiple edges, i.e., we assume that only one 
edge may connect two vertices. 
 The structure of a network is described by its adjacency 
matrix, Â , whose elements consist of zeros and ones, for the 
unweighted graphs and numbers between 0 and 1 for the 
weighted networks. In the case of unweighted networks, an 
element of the adjacency matrix with undirected edges, aij , is 1 
if vertices i and j are connected, and is 0 otherwise. Therefore, 
the adjacency matrix of a network with undirected edges is 
symmetrical. For a network with directed edges, an element of 
the adjacency matrix, aij, equals 1 if there is an edge from the 
vertex i to the vertex j, and equals 0 otherwise. 
 The degree of a vertex, k, is the total number of its 
connections. In-degree, ki, is the number of incoming edges of 
a vertex. Out-degree, ko is the number of its outgoing edges. 
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Hence, k = ki + ko. Degree is actually the number of nearest 
neighbors of a vertex, z1. The network structure is given by the 
probability distributions: P(k) = the degree distribution; Pi (ki)  
P(ki) = in-degree distribution; Po(ko)  P(ko) = out-degree 
distribution;P(ki, ko) = the joint in- and out-degree distribution. 
 There are valid the following properties: 
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If a network has no connections with the exterior, then the 
average in- and out-degree are equal: 
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 Although the degree of a vertex is a local quantity, a degree 
distribution often determines some important global 
characteristics of random networks. Moreover, if statistical 
correlations between vertices are absent, P(ki; ko) totally 
determines the structure of the network. One may define a 
“geodesic” distance between two vertices, i and j, of a graph 
with unit length edges. It is the shortest-path length, ℓij, from 
the vertex i to the vertex j. If vertices are directed, ℓij is not 
necessary equal to ℓji. It is possible to introduce the distribution 
of the shortest-path lengths between pairs of vertices of a 
network and the average shortest-path length ℓ ≡ ℓ of a 
network. The average here is over all pairs of vertices between 
which a path exists and over all realizations of a network. 
 The quantity ℓ determines the average distance between two 
nodes measured on the shortes path joining the two nodes. For 
a d-dimensional network containing N verices, one may 
demonstrate that ℓ  N 1 d. In a fully connected network ℓ = 1.  
 The average minimal path length, ℓ, may be roughly estimated 
for a network with random connections: if the average number 
of nearest neighbors of a vertex is z1, then about (z1)ℓ nodes are 
placed at a distance ℓ from the vertex or closer. Hence, N  (z1)ℓ 
and one gets: ℓ  ln N / ln z1. We can see that the average 
minimal path length may have small values even for very large 
networks. This smallness expresses mathematically the small-
world effect described in the previous section. 
 In order to describe the connections in the environment closest 
to a vertex, the so-called clustering coefficient is introduced. 
For a network with undirected edges, the number of all possible 
connections of the nearest neighbors of a vertex i (having z1

(i) 
nearest neighbors) equals to:  z1

(i)[z1
(i)  1]/ 2.  

If only y(i) of them are present, the clustering coefficient of this 
vertex is: 
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In other words, C(i) is the fraction of existing connections 
between nearest neighbors of the vertex. The physical meaning 
of the clustering coefficient is the probability that two nearest 
neighbors of a vertex are nearest neighbors also of one another. 
Averaging C(i) over all vertices of a network yields the 
clustering coefficient of the network, C. Remember that the 
notion of clustering was firstly introduced in sociology [6]. 
 In a graph having all pairs of vertices connected (fully 
connected network), C = 1. In a graph having the vertices 
connected only to their first order neighbours (tree-like 
network), C = 1. In a classical random graph having N vertices, 
M edges, and an average number of firs order neighbours z1 for 
each vertex, the following properies may be easily derived: 
M = z1N / 2; 
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 1.3 The classical random networks  
The simplest and most studied network with undirected edges 
was introduced by P. Erdös and A. Rényi [7]. In their model the 
total number of vertices, N, is fixed and the probability that two 
arbitrary vertices are connected equals p. 
 This network contains, on average, pN(N  1)/2 edges. The 
degree distribution is binomial: 
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so that the average degree is  k  = p(N  1). For large values 
of N, eq. (4) has the form of the Poisson distribution: 
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One can see that P(k) decreases rapidly at large degrees k. In 
literature, this kind of graph is usually called classical random 
network [8].  
 However, there is a significant problem with the random graph 
as a model of social networks [9]. Let us consider a network of 
aquitances. The problem is that people’s circles of 
acquaintances tend to overlap to a great extent. Your friend’s 
friends are likely also to be your friends, or to put it another 
way, two of your friends are likely also to be friends with one 
another. This means that in a real social network it is not true to 
say that a person P has z2 second neighbors, since many of 
those friends of friends are also themselves friends of person P. 
This property is the clustering of network described in the 
previous section by eq. (3).  
 A random graph does not show clustering. In a random graph 
the probability that two of person P’s friends will be friends of 
one another is no greater than the probability that two randomly 
chosen people will be. On the other hand, clustering has been 
shown to exist in the social networks [10]. This is why the 
clustering coefficient C, was defined as the average fraction of 
pairs of neighbors of a node which are also neighbors of each 
other. 
 
1.4 The Watts-Strogatz model 
In § 1.2 we have shown that the random networks display the 
so-called “small-world effect” that consists in the fact that the 
averaged minimal path length is small even in the case of the 
large networks. Moreover, Watts şi Strogatz [11] pointed out 
another important property of the natural and social networks: 
in spite of the fact that the shortest path length is small – more 
exactly, of the order of logN – the clustering coefficient may 
display large values, much larger than the values corresponding 
to the random networks. The networks that are described by 
both above properties are called, in literature, “small-world 
networks”. This kind of networks belongs to a transition class 
from ordered to disordered structures. 
 Obviously, this class of systems has interesting properties: 
they were constructed starting from ordered networks by 
various methods. The most common methods are the rewiring 
of links and the addition of random links between vertices. In 
this section we refer to the networks generated in these ways. 

The original network of Watts and Strogatz is constructed in 
the following way: 
 A regular one dimensional lattice with periodical boundary 
conditions is present. Each of L vertices has z  4 nearest 
neighbors (z = 2 was not appropriate for Watts and Strogatz 
since, in this case, the clustering coefficient of the original 
regular lattice is zero). 
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 One takes all the edges of the lattice in turn and with 
probability p rewires to randomly chosen vertices. In such a 
way, a number of far connections appears. Obviously, when p 
is small, the situation has to be close to the original regular 
lattice. For large enough p, the network is similar to the 
classical random graph. 
 Watts and Strogatz studied the crossover between these two 
limits. The main interest was in the average minimal path 
length, ℓ, and the clustering coefficient (recall that each edge 
has unit length). The simple but exciting result was the 
following. Even for the small probability of rewiring, when the 
local properties of the network are still nearly the same as for 
the original regular lattice and the clustering coefficient does 
not differ essentially from its initial value, the average minimal 
path length is already of the order of the one for classical 
random graphs (see figure 1) 
 This result can be understood in an intuitive manner. In fact, 
the average minimal path length is very sensitive to the 
shortcuts. One can see that it is enough to make a few random 
rewirings to decrease ℓ by several times. On the other hand, 
several rewired edges cannot crucially change the local 
properties of the entire network. This means that the global 
properties of the network change strongly already at pzL  1, 
when there is one shortcut in the network, i.e., at p  1/(Lz), 
when the local characteristics are still close to the regular 
lattice. 
A large number of works focus on the distribution of diseases 
on such networks [12].  
In Figure 2, the fraction of "infected" nodes in the network ni / 
L is shown vs. time passed after some vertex was infected. At 
each time step, all the nearest neighbours of each infected 
vertex fall ill. At short times, ni/L  t d but then, at longer times, 
it increases exponentially until the saturation at the level ni/L = 
1. 
 The Watts-Strogatz model and its variations seem exactly 
solvable analytically. Nevertheless, the only known exact result 
for the Watts-Strogatz model is its degree distribution. It was 
found to be a rapidly decreasing function of a Poisson kind 
[13]. 

 
Coefficient C in the Watts-Strogatz model versus the 

fraction p of the rewired links 
Figure no 1 
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The numerical simulation was performed using NetLogo soft. One can 
notice that C is practically constant in the range where ℓ decreases 
sharply. 

 
 
 
 
 
 

Spreading of diseases in a “small-world” network 
Figure no 2 
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The average fraction of infected nodes ni/L is plotted vs. The elapsed 
time from the instant when the first vertex fell "ill". The numerical 
simulation was performed using NetLogo soft. 
 

1.5 Small-world solvable models 
The properties of the small-world networks may be studied 

on a simplified model that allows an analytic treatment. One 
starts from a 1-dimensional network composed of L nodes 
placed on a ring and chained by N links, each of them having 
the length equal to unit. In this case, the coordination number z 
= 2 and the clustering coefficient C = 0. We add a central 
vertex which connects to the initial nodes with a probability p 
by links having the length 1/2. More generally, we can add a 
number of extra vertices in the middle which are connected to a 
large number of sites on the main lattice, chosen at random 
(Figure 3). In fact, this model is similar to theWatts–Strogatz 
model in that the addition of the extra sites effectively 
introduces shortcuts between randomly chosen positions on the 
lattice, so it should not be surprising to find that this model 
does display the small-world effect.  
 Such nodes which have unusually high coordination numbers 
or which are linked to a widely distributed set of neighbours are 
frequently met in the real life. It seems that the “six degrees of 
separation” effect is due to a few people who are particularly 
well connected. We show below that even in the case where 
only one extra site is added, the model displays the small-world 
effect if that site is sufficiently highly connected ([8, 9]). 
  
For the initial network ℓ (p = 0) = L/4, and for completely 
connected network ℓ (p = 1) = 1.  
 
In Appendix we derive the distribution P(ℓ) of the minimal path 
lengths. At the limit L   and  
p  0, introducing the quantities   pL (the average number 
of new added links) şi z  ℓ / L, the distribution is of the form: 
Q(z, )   
LP(ℓ, p) = 2[1 + 2z + 22z(1 – 2z)]exp(2 z) (6) 
 
The distribution described by Eq. (7) is plotted in figure 5. In 
the same limit, the average minimal path length depends on the 
average number of new added connections as: 
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This function is plotted in figure 6. One can easily see that  
 
 z ( = 0) = 1/4,  
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while  
 
 z (  1)  1/ , i.e. ℓ  1/p. 

 
A “small world” analytically solvable 

Figure no 3 

 
The L vertices are situated on a ring and are connected by links having 
the length equal to unit. With probability p, some of these nodes are 
connected to the central vertex by links having the length equal to 1/2. 
This structure can model a real situation. The L families of a mountain 
village have few links among them except for the nearest neighbours. 
Nonetheless, some additional links may appear during the meetings of 
people at church [8]. 

The distribution Q(z, ) = LP(l, p) of the normalized 
minimal path lengths z  ℓ/L in a “small world” network 

(eq. (7)) 
 
Figure no 4 
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Here L is the number of nodes of the network, while  = pL. We 
considered L = 50. The represented plots correspond to  = 0, 2, 5, 8, 
11, 14. 
 

The normalized minimal path length ℓ/L for a “small 
world” network, versus the number  = pL of the new 

added links, in semi-logarithmic plot (eq. (8)) 
 
Figure no 5 
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2. EMPIRICAL RESULTS 

 
We studied an acquaintance network composed of 40 pupils 

randomly chosen from various levels of study. We avoided to 
choose pupils from the same class and did not consider the 
links with teachers, focusing on the interaction among pupils. 

 
2.1 Remaking Milgram’s experiment 

 
A number of 10 tickets were given to 10 of the youngest 

pupils (11-13 y. o.) and 10 tickets were given to 10 of the 
oldest pupils (16-18 y. o.). The instruction was to hand on to 
addressee (whose name was written on the ticket) by person-to-
person contacts. Each intermediate pupil added his own 
name/identification number to the ticket and gave it forward.  

 All the tickets reached to their addressees. The average 
number of steps was found about 2.7. Redoing their trajectories 
we found the structure of the network drawn in figure 6. The 
empirical clustering coefficient was found C = 0.21. 

 
The structure of the pupils’ network as it was obtained 

remaking the Milgram’s experiment 
 
 
Figure no 6 

 
 
 Further we used the NetLogo soft to generate a small-world 

network having the same characteristic values (ℓ and C). The 
corresponding small-world network was generated taking a 
probability of rewiring p = 0.33 (figures 7a and 7b).  

 Some results are synthesized in Table 1 
 
 
Table 1: The number of nodes N, average degree of 

separation ℓ, and clustering coefficient C, for three real-world 
networks. The last column is the value which C would take in a 
random graph with the same size and coordination number. 

 
Network N ℓ C Crandom 

pupils 40 2.7 0.21 0.05 
 
 Rewiring the links one-by-one we found that in the domain 

in which C decreases slowly from 0.29 to 0.21, ℓ decreases 
sharply from 5.38 to the final value 2.73. 
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2.2 The weighted small-world network 
 
In the second part of the experiment we asked to each pupil 
implied in experiment to describe his/her friendship with the 
person whom he/she gave the ticket, by one of the variants: 
 

i) Close friendship (3 points); 
 

ii) Friendship (2 points) 
 

iii) Casual acquaintance (1 point). 
  
The total number of points was 276. In the empirical network, 
at the corresponding link we attached one of the the weights: 
3/276, 2/276 or 1/276. In order to complete the network, we 
assign to the unrealised links the weight w = 0. In this way, a 
weighted network is obtained and its adjacency matrix is 
completely determined. 

 
The initial regular network used for generating the small-
world network by Watts-Strogatz method. The setting 

values: C = 0.5; ℓ = 5.38; p = 0.5 
Figure no 7a 

 
 

The small-world network that simulates the pupils’ 
network, generated by rewiring all the links. The 
characteristic values: C = 0.2; ℓ = 2.73; p = 0.33 

Figure no 7b 

 
 

Now we consider the pupils as vertices of this fully 
connected weighted network, having attached to the edges their 
weights: 

ijij Aw ˆ  (8) 
fulfilling the relations: 

i) 0 ≤ wij ≤ 1; and 
ii) wij = wji. 
Another measure of the two vertices connection strength is 

the overlapping coefficient [10] defined for an unweighted 
network as: 
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where N is the number of vertices, ki and kj are the degrees of 
the two considered nodes, and Kij is the number of common 
neighbours. For an unweighted network, Oij does not account 
the edge directly linking i and j but rather to what extent the 
two nodes “overlap” by means of their common neighbors.  

 For a weighted network, Eq. (9) may be generalized as: 
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One can easily see that 0 < Oij < 1, and Oij = 1 only for all wij 

= 1, i.e. fully connected non-weighted network. However, for a 
weighted network, Oij can never be zero. 

 Summing all Oij’s for one vertex, one gets an alternative 
measure of the vertex strength: 
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Table 2 The overlapping index of vertices in the weighted network 

of pupils. The vertices (pupils) are assigned an identification number 
from v01 to v40.  

 
v01 12.56 v15 8.71 v29 8.07 
v02 12.23 v16 8.65 v30 8.05 
v03 11.97 v17 8.65 v31 7.94 
v04 11.79 v18 8.60 v32 7.84 
v05 10.56 v19 8.55 v33 7.73 
v06 9.55 v20 8.52 v34 7.73 
v07 9.47 v21 8.52 v35 7.59 
v08 9.42 v22 8.47 v36 7.42 
v09 9.34 v23 8.34 v37 7.11 
v10 9.23 v24 8.23 v38 6.79 
v11 9.15 v25 8.13 v39 6.79 
v12 9.10 v26 8.10 v40 6.29 
v13 8.94 v27 8.10   
v14 8.76 v28 8.07   

 
 The results for the considered weighted network are shown 

in Table 2, in decreasing order of Oi. 
 

3. PHASE TRANSITIONS IN THE WEIGHTED SMALL-
WORLD NETWORK 

 
3.1 Statistical mechanics of the weighted networks 

In the same way as in Ref. [14] we can elaborate a sort of 
statistical mechanics of the weighted network. Firstly, we can 
try to find the probability of having the weight wij assigned to 
the edge i - j on the hypothesis that in the isomorphic multi-
graph the links are attached randomly between the edges. If we 
have N vertices, the corresponding number of possible 
connections becomes: 
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and the probability of having wij simple edges between the 
vertices (i) and (j) is read: 
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Introducing the notation: 2/)1(  NN , after the 
normalization: 
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the above probability becomes: 
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Finally, one can turn back to the initial network with 0 ≤ wij 
≤ 1; defining: 
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Eq. (12) gets the more familiar “canonical” form: 









ji
ji

ij

ij
ij w

w
p

,
)exp(

)exp(


 . (14) 

Note that the parameter β in Eq. (13) is not related to any 
temperature. Nonetheless, β can be seen as an internal 
parameter of the statistical ensemble of N-vertex networks, in 
the same way in which the temperature is for the canonical 
ensemble. Unlike the thermodynamic meaning, the changing of 
β does involve neither warming nor cooling process, but it 
simply means the shifting from a statistical ensemble to another 
one.  

On the above assumptions, some basic thermodynamic 
quantities can be defined in correspondence to the classical 
statistical mechanics, as follows: 

 
 - The partition function: 

Z = 
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- The entropy: 
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- The free energy: 
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- The average energy / link: 
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- The “thermal” susceptibility: 
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3.2 Deconstructing the weighted network 
 
In order to get some more information about the structure of 

weighted network we examine it during a thinking process of 
decomposition, which consists in removing the vertices one by 
one, in decreasing and, respectively, increasing order of the 
overlapping coefficients from Table 2. Keeping somehow the 
“thermodynamic” analogy, the quantities defined by Eqs. 13-16 
are studied as functions of β, which is a measure of the number 
of remainder vertices, and (1 / β), which is a measure of the 
number of removed vertices. 

 
Some results are plotted in figures 8-9. 

 
The thermal susceptibility variation in the network 

deconstruction process, in log-log plot. The weak connected 
nodes were removed first 

Figure no 8a 
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The fourth central cumulant VL variation in the vicinity of 
the critical points marked out in figure 8a 

Figure no 8b 
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The thermal susceptibility variation in the network 
deconstruction process, in log-log plot. The strong 

connected nodes were removed first 
Figure no 9a 
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The fourth central cumulant VL variation in the vicinity of 
the critical points marked out in figure 9a 

Figure no 9b 
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During the deconstruction process, the thermal susceptibility 

(the heat capacity) displays, by far, the most interesting 
behaviour. This quantity has two significant discontinuity 
points. We test these points by calculating the fourth central 
cumulant: 
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one finds that VL has local minima at the values corresponding 
to the largest fluctuations of T, This behavior indicates the 
presence of two critical points [15]. 

 In literature, a first order phase transition was considered so 
far the transition from the regular lattice to the small-world 
network [16]. As well, phase transitions appear during the 
processes of epidemics spreading and percolation [17]. The 
behavior of the thermodynamic quantities defined above 
accredits a new kind of phase transitions that appear during the 
simulated process of the network deconstruction.  

  
4. CONCLUSION 
 
We reviewed briefly several of the most significant steps on the 
way from the Stanley Milgram’s "six degrees of separation" to 
the modern approaches of the small-world networks. 
 As long as the most human interactions take place directly 
between individuals, we may expect that a large number of 
social networks to display the small-world effect. That is why, 
in the recent literature, the spread of rumours, information and 
diseases are mostly studied on small-world networks.  
 In the second section we studied the small-world effect on the 
particular network of pupils in the school. We found that, in 
spite of some unavoidable sources of error, any two randomly 
chosen pupils can be connected by only a short chain of 
intermediate acquaintances. Particularly, the investigated 
network may be easily simulated by Watts-Strogatz method of 
links rewiring. 
 One alternative to the Watts-Strogatz method is to explain the 
small-world effect by existence of few nodes in the network 
which have unusually high coordination numbers or which are 
linked to a widely distributed set of neighbours. An alternative 
model of this kind was firstly elaborated by S. N. Dorogovtsev 
and J.F.F. Mendes and was proved to be analitically solvable. 
 We proved this assumption in the last section. In order to 
approach better the real-life situation we attached some weights 
to the links, getting in this way a weighted small-world 
network. During the thinking process of network 
deconstruction, some thermodynamic quantities carry forth 
critical behaviour indicating phase transitions occurrence. The 
meaning behind this finding is the existence of several nodes 
whose removal leads to qualitative changes in the network 
structure. On this way we may conclude that, to a large extent, 
the small-world effect is due to a few people who are 

particularly well connected. Their role in the small-world 
network running and evolution remains a task to study in the 
future.  

 
APPENDIX 
The analytic solution for the “small world” model in § 1.5 
Let us consider the network in figure 4 with directed edges. 
The case of undirected edges is also analytically solvable, in a 
similar way, but the mathematical work is more complicated. 
Nonetheless, the results do not differ qualitatively in the two 
cases. 
 In order to get the distribution P(ℓ) of minimal paths, an 
intermediate step is to infer a recurrence relation for P(ℓ, k) i.e. 
the probability that the minimal path length between two nodes 
be ℓ when the “Euclidian” distance between nodes (measured 
on the ring) is k. Obviously, the property  


k

l
klP

1
1),(  is 

fulfilled. We calculate the quantities P(l  k, k) for several 
small values of ℓ and k, and, starting from them we infer a 
general solution.  
 To find P(ℓ, k) for the model in figure 3 we have to take into 
account all the possible combinations of the edges connecting 
the center with the vertices i = 1, 2, …, k. To each of these 
edges corresponds a probability p (and a complementar 
probability 1p the link be not realised). The lengths of edges 
between two adjacent nodes is 1, while the links joining these 
nodes to center is 1/2. For small values of ℓ and k we easily get:  
 
P(1, 1) = 1; 
P(1, 2) = p2, 
P(2, 2) = 1  p2; 
P(1, 3) = p2, 
P(2, 3) = 2p2(1  p), 
P(3, 3) = 1  p21  2p2(1  p); 
P(1, 4) = p2, 
P(2, 4) = 2p2(1  p)1, 
P(3, 4) = 3p2(1  p)2 
P(3, 3) = 1  p2[1(1  p)0 + 2(1  p)1 + 3(1  p)2]; (A1) 
 
………………. 
 
P(ℓ  k, k) = ℓp2(1  p)ℓ  1, 
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The minimal paths distribution is:  
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Substituting (A2) in (A3) one gets: 
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The average minimal path length is: 

 




1

1
)(L

l
P   (A5) 

 
For simplicity, we drop further the brackets, keeping the 
notation ℓ for the average minimal path length: 
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 In order to get a description of the transitory regime between 
the regular lattice and the random network, we consider the 
limits L   and p  0 under restriction that the quantities   
pL and z = ℓ/L are fixed. In these conditions, from eq. (A4) we 
get the continuous distribution Qdir(z, ): 
 
Qdir(z, )  LP(l, p) = 1 + z + 2z(1 – z)exp( z) (A7) 
where 0  z  1. 
  
Further, from eq. (A6) (or (A7)) we get the normalized average 
minimal path length: 

)]exp()3(32[1
2 


 z

L
  (A8) 

 
 
 
 Eqs. (A7) şi (A8) are valid for the networks with directed 
edges. The relation (7) from §1.5, that is also valid for 
networks with undirected edges, can be derived from the eqs. 
(A7) and (A8) by means of the variable changes:  
z  2z and Q(z, ) = 2 Qdir(2z, ).  
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