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1. INTRODUCTION 

 
There have been a large number of studies (see among 

others Poterba and Summers [1], or Spierdijk, Bikker and 
van den Hoek [2]) trying to infer if stock prices exhibit 
generally mean reversion or not. The present paper is not 
trying to answer such a question, but rather to provide a 
practical, automisable approach in order to identify the 
stocks which have a stable trend, on which on can bet.  

From practical point of view, it is important to get the 
general trend of stock prices, especially when deciding the 
strategic, long time, asset allocation. However, it is not 
obvious which stocks exhibit mean reversion and how to 
calculate it, while the noise might play an important role. 

As one can see from Figure1, the mean-reversion 
property is not a striking one, and most of the stocks have 
such jumps that this algorithm does not guarantee always 
finding the mean to which the stock reverts.  

 
Example of stock (index) exhibiting mean-

reversion 
Figure no 1 

 
 
As in most of the analysis, one should consider only data 

points where no significant financial events showing up, 
such that the overall financial system is not perturbed. In 
addition, the historical time window should be at least of the 
order of the time period on which the mean reversion is 
inferred for. 

The second section of this paper describes the 
mathematical formalism used in deciding on the parameters 
signaling a mean-reverting trend. The relationships that they 
should satisfy is inferred and described in this part.  

The third section goes through three possible methods to 
validate the stability of the inferred values of the parameters, 
with some visual examples on how distributions ideally 
should look like. 

 

 
2. PARAMETERS ESTIMATION 
 

One starts from the arithmetic Ornstein-Uhlenbeck mean 
reversion model as developed by Schwartz [3], with m being 
the mean to which the reversion is done and h being the 
speed of the reversion: 

 
dx =h(m-x)*dt+s*dz (1) 
 
Equation(1), describing the variation of the logarithm of the 
stock price P,  Pd

P
dPdx ln  is a continuous time 

version of the first-order autoregressive process, AR(1) in 
discrete time (see Dixit and Pindyk [4]), as dx represents the 
limiting case (Dt tends to zero) of the AR(1) process:  
 
xt - xt - 1 = m (1 - e- h Dt) + (e- h Dt - 1) xt - 1 + et  (2) 

 
Hereby et is the noise, normally distributed with mean zero 
and standard deviation se, and: 
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Considering the Taylor expansion of Equation(2), for the 
limit case Dt->0, Equation(4) is obtained: 
 
xt - xt - 1 ~m(1-(1-h dt)) + ((1-h dt)-1) xt - 1 + et = 

   =mh dt - hxt - 1dt + et  

   =h(m-xt - 1)dt + et (4) 
In order to estimate the parameters of mean-reversion, one 
runs the regression:  
 
 xt - xt - 1 = a + b xt - 1 + et (5) 

The two parameters, m and h, can be calibrated as follows:  
 m = -a/b ;   (6)   

 h = - ln(1 + b);     (7)
       

From Equation(3) and Equation(7) 

  1b1
b)+ln(1*2* 2 

 ess    (8) 

where se is the standard deviation from the regression, 
calculated from the residuals distribution et. 

The unit in the above equation is percentage by time unit, 
and of course the time unit is the same time-series unit (if 
using monthly time-series, it is % per month, etc.). 
If one uses monthly data and wants to obtain annual values 
for the parameters, one has multiply the value of h, obtained 
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in the equation above, by 12 while multipling the value of s 
obtained Equation(8) by the square-root of 12.  

The S&P 500 index is an excelent toy-data model, 
especially given its clear mean reverting trend for the 
analysed period. In real life, especially for shorter time 
periods, the trend is mostly not visually observable. 

Starting from Equation(4), one obtains the next formula 
for the fitted data, by considering dt=1: 

xt =m(1-(1-h)(t-1)) + (1-h)(t-1)) *x1 (9) 

  
3. MODEL VALIDATION 

 
As one can always find a solution for the set of calibration 

parameters, one should decide when such values make 
sense, and how well they describe the actual behaviour.  

In an exemplifying analysis, one has used the S&P 500 
daily closing prices, from 01.01.2009 to 30.06.2011 (one 
and a half years). The actual prices St, presented in the 
historical chart from Figure2, have been translated to the 
logarithmic scale, xt=ln(St).  

 
Historical chart of S&P 500, for the considered 

period 
Figure no 2 

 
 
Below there are three possible complementary methods 

one can validate the final results with: goodness of 
fit/distribution of residuals, cross-validation and the 
Jackknife method/bootstrapping. 

 
3.1. Goodness of fit/Distribution of the residuals 

 
An ideal regression should look like in Figure3, where the 
blue data points are distributed on both sides of the red fitted 
lineFigure 3: Almost ideal distribution of data for linear 
regression. 

 
Spread distribution of data points around the fitted 

line 
Figure no 3 

 
 

On the other side, the residuals should be distributed more 
or less normally, as Equation(2) assumes.  

 
Histogram of residuals, bell shaped, with a standard 

deviation se=0.012923, a kurtosis of 3.28 and a 
skewness of -0.58 

Figure no 4 

 
 

Figure4, containing the histogram respresentation of the 
distribution showed in Figure3, and its fitted parameters 
indicate a distribution closed to a perfect Gaussian one 
(which would be characterized by an expected kurtosis 
value of 3 and an expected skewness of 0.00).  

The fitted regression parameters were as it follows: 

a=1.710 * 10-5 
b=1.065*10-4 

They lead to a standard error s giving good confidence in the 
results: 

m=-0.1605 
h=-1.065*10-4 
s=0.012922 

Making use of Equation(9), one obtains the results from 
Figure5: 
 
 

The fitted data, in blue, do show the increasing mean-
reverting trends line of the original data, in red 

 
 
 
Figure no 5 
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3.2. Cross-validation 
 

The cross-validation excludes one observation at a time, 
when estimating regression coefficients, and then uses these 
coefficients to predict the excluded data point.  

This procedure is repeated for all data points.  
At the very end, the estimated values can be compared 

with the ones obtained making use of the full distribution. 
There are no methods for testing statistical significance with 
cross-validation.  

When cross-validation is going to be used as a mean-
reverting feature selection, to predict the future values, it is 
good to remember that it might be possible to over-fit the 
crossed validated statistic and end up with a model that 
performes under expectations. As the effects of optimised 
cross-validation statistic can be a too optimistic performance 
estimate (see for example Ambroise and McLachland [5])  

However, averaging the quality of the predictions across 
the validation sets yields an overall measure of prediction 
accuracy. 

 
3.3. Data-Resampling: Jackknife & Bootstrap 

 
As in the previous Subsection2.2, within the Jacknife 

method one excludes one observation at a time, when 
estimating regression coefficients. In the case when the 
observation i is excluded, one gets Equation(9): 

  
xt - xt - 1 = ai + bi xt - 1 (9) 
From this new set of replicates of the original statistic, an 

estimate for the bias and an estimate for the standard error of 
aand b parameters can be calculated. The Jackknife method 
is an useful approach when the dispersion of the distribution 
is wide or when extreme values are present in the data set. 
For an overview of this method one could use Yu [6]. 

Alternatively, especially when the data set is of about 
twenty points, one can make use of the bootstrapping 
method. The standard bootstrapping method, applied to, say 
twenty events, uniformly generates a random number 
between 1 and 20, as many times as the enriched sample has 
to count (three hundred events is among the most used 
numbers). By arbitrarily ordering the twenty events, from 1 
to 20, every time the number 3 shows up, the third event is 
added to the enriched sample. When the number of events is 

much lower, say about five events, bootstrapping is still 
possible, but making use of low-sample specific, dedicated 
techniques. Detailed algorithms for bootstraping regression 
models can be found, for example, in Davison and Hinkley 
[7].  
 

 
4. CONCLUSIONS 

 
The method presented here gives an additional, practical 

tool to the portfolio risk managers in order to decide which 
financial instruments their portfolios should contain.  

The method is intuitive, simple, and its results are easy to 
interpret, as well as being sufficiently uncomplicated to 
allow automation of the whole procedure, including the 
validation tests.  
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