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 Abstract. The Fractal Market Hypothesis and the existence 

of fat tails are investigated for the BET Index of Bucharest 
Stock Exchange. In addition to this, an uncertainty index is 
defined in order to explain large deviations in stock market 
returns. 
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1. INTRODUCTION 

 
This Fractal Market Hypothesis (FMH) was first 

introduced by Peters (1989) as a response to the Efficient 
Market Hypothesis (EMH).  

The Fractal Market Hypothesis is based on four essential 
elements describing the stock market: 

- The market is stable and liquid enough when 
investors have different time horizons; 

- Investors maintain the time horizon of the 
investments independently of informational changes; 

- Available information are not automatically reflected 
by prices; 

- The evolution of trading prices is reflected in the 
evolution of anticipated earnings. 

Mathematically, FMH is equivalent to is the fact that the 
logprice tt Pp ln is a fractional Brownian motion with the 
following properties: 
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In the above notations H is the Hurst coefficient, 

)1,0(H , which defines the behaviour of the returns series.     
- H=0.5 - prices follow a random walk process, and 

returns are not correlated; 
-  H<0.5 - the series of returns presents positive 

autocorrelation (persistent series); 
-  H>0.5 - the series of returns presents negative 

autocorrelation (anti-persistent series). 
 
The fractional Brownian motion has the property of auto-

similarity of a fractal, because in distribution terms, we have:  

atp ~ t
H pa 2 . 

 
Stable distributions have a remarquable property:  they allow 
for skewness and heavy tails and more, any linear 
combination of stable independent variables is also stable. In 

other words, the shape of distribution is preserved under 
linear transformation. 

 
In the literature there are several parameterizations of 

stable distributions. For this paper we have chosen the 
parameterisation S0, in Nolan (2003)’s variant. 
 
Thus, a variable X follow a stable distribution )0;,,,( S  
if its characteristic function has the form: 
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In the above notation ]2.0( is the characteristic 

parameter (tail index), ]1,1[ is the skewness parameter, 
),0(  is the scale parameter and R is the location 

parameter. 
 
The behavior of stable distributions is driven by the values 

of stability index  : small values are associated to higher 
probabilities in the tails of the distribution. 
 

2. DATA ANALYSIS 
   
The sample used in analysis consists in daily data for BET 

Index from Bucharest Stock Exchange (3357 observations, 
covering the interval 2007-2011). 

Starting from the observed price tp , we compute the 
logreturns as  

 

1loglog  ttt ppr . 
 
For time series of logreturns, we estimate the stability 

index   for stable distribution and the Hurst exponent, using 
a rolling window of 250 trading days. 

 
The Hurst exponent was estimated using the R/S analysis, 

while the tail index   was estimated using the time series 
regression method  (Kutrouvelis, 1980). 

 
 



 33

 
Hurst

    0.10000

    0.20000

    0.30000

    0.40000

    0.50000

    0.60000

    0.70000

    0.80000

    0.90000

    1.00000

date

01/01/1998 01/01/2000 01/01/2002 01/01/2004 01/01/2006 01/01/2008 01/01/2010 01/01/2012

 
Figure 1. The Hurst exponent - 250 trading days rolling 
window 
The behaviour of the Hurst exponent is not stable over time: 
starting 2008, when the financial crisis hit Romanian stock 
market, the time series returns present a very irregular pattern 
in terms of autocorrelation structure. The value of the Hurst 
exponent goes from 0.18 (positive autocorrelation) to 0.5 
(random walk), having a maximum of 0.97 (negative 
autocorrelation).  

 

 
Figure 2. The tail index α - 250 trading days rolling 

window 
 
The estimated values of the tail index for the returns of the 

BET Index show a clear departure from normality. The tail 
index has a maximum value of 1.98 on 30 June 2008, before 
the financial crisis in October 2008. 
 
Our working hypothesis is that the likelihood of large 
negative returns could be explained by extreme values of the 
Hurst exponent or of the tail index. To verify this hypothesis 
we estimate the following binary logistic regression model: 
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In the above equation, we have: 

- 1* tY , where }05.0)(,|1{*  
ttttt rrPrrY (lower tail 

of returns distribution); 
- 5.0 tt HdH  is the deviation of the Hurst exponent at 

time t from the value corresponding to a random walk ; 

  
- td  is the relative change of the tail index from the time t-1 

to t. 
 

Table 3. Analysis of Maximum Likelihood Estimates for 
model (1) 
Parameter Estimate Standard 

Error 
Wald 

Chi-
Square 

Pr > ChiSq 

Intercept -2.86 0.09 1029.22 <.0001 
dHurst -1.50 0.58 6.70 0.01 
dalpha -12.78 6.14 4.34 0.04 

 
 
 
Table 4. Odds Ratio Estimates for model (1) 
 

Effect Point Estimate 95% Wald 
Confidence Limits 

dHurst 0.22 0.07 0.69 
dalpha <0.001 <0.001 0.47 

 
Analysing the results of the estimation, we can  extract 

some facts regarding the relationship between the fractal 
nature of returns, heavy tailness and the probability of large 
negative returns: 

 
- The likelihood of extreme negative returns decreases 

as the value of Hurst exponent is higher than 0.5, the 
characteristic value of a random walk.  In other 
words, if the local trends on the market are likely to 
invert, i.e. the time series of returns is anti-persistent, 
then the probability of a stock market crash 
diminishes. By contrast, if the market has a 
persistent trend, then the likelihood of a stock market 
crash increases. 

- If the market stability index increases (the tail index 
converges to Gaussianity), then the likelihood of a 
stock market crash decreases. By contrary, if the tail 
index has a negative trend, then the likelihood of a 
stock market crash increases. 
 

In order to evaluate the impact of both fractal dimension 
and probability in the tails of the returns distribution, we set 
up an uncertainty index, as follows:  

t

t
t
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 . 

For this uncertainty index we have the following situations: 
- For a constant Hurst exponent, the Uncertainty Index 

is negatively correlated to departure from normality 
of returns distribution; 

-  For a constant tail index, high values of tUI  
correspond to high values of Hurst exponent, 
meaning reversions in local trends.  
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Figure 3. Uncertainty index for BET Index 
 
The following binary logistic regression model 
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was estimated and the results are presented in the 
following table. 
 
 
Table 5. Analysis of Maximum Likelihood Estimates for 
model (2) 
 

Parameter Estimate 
Standard 

Error 

Wald 
Chi-

Square Pr > ChiSq 
Intercept -1.69 0.32 27.40 <.0001 
Index -3.54 0.90 15.35 <.0001 
 
 
Table 6. Odds Ratio Estimates for model (2) 
 

Effect 
Point 

Estimate 

95% Wald 
Confidence 

Limits 
Index 0.03 0.01 0.17 

  
Analysing the results of the estimation, we can see that the 

Uncertainty Index is negatively correlated to the likelihood of 
extreme negative daily returns. Thus, if the Uncertainty Index 
increases by 1, then the odds of occurrence of extreme 
negative values of BET returns drops by around 97%. 

 
3. CONCLUSIONS 

 
In this paper we propose a method for defining a measure 

of stock market uncertainty, using the Hurst exponent and the 
tail index associated stable distributions. The statistical tests 
applied to the daily BET index returns series indicate that this 
measure of uncertainty is correlated to probability of large 
negative returns. In our future researches we intend to 
develop this uncertainty index in order to capture both fractal 
dimension and heavy tailness of returns distribution. 
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APPENDIX 
       
 
 

A SAS code for estimating the Hurst exponent 
 
This SAS code uses a dataset called date, with two 

variables: t is the time index and logreturn is the variable 
containing the returns of a financial asset. 

The value of the Hurst exponent is saved in the dataset 
hurst. 
 
 
proc iml;                                                            
use date;  
 
READ all var {t logreturn} into y;                                                                                                     
n=nrow(y);   
p=int(log2(n/16)); 
pp=2**p; 
   
rsp=j(pp,p,0); 
nmare=j(p,1,0); 
 
do q=0 to p; 
 k=2**q;  
 
 delta=int(n/k); 
 xt=j(delta,1,0);  
 st= j(delta,1,0); 
 gt=j(delta,1,0); 
 do i=1 to k; 
  do j=1 to delta;                                                                                           
 
  xt[j]=y[(i-1)*delta+j,2];                                                                                                          
  end;                                                                                 
    mean = mean(xt); 
 
  std = sqrt(var(xt)); 
 
 
   st=xt-mean; 
   gt[1]=st[1]; 
   do l=2 to delta;                                                                                                           
   gt[l]=gt[l-1]+st[l];                                                                                                          
 end;                                                                                                       
   gmax=max(gt); 
   gmin=min(gt); 
   rrs=(gmax-gmin)/std; 
    rsp[i,q+1]=rrs; 



 35

   
 nmare[q+1,1]=delta; 
 
 end; 
 
end; 
 
nonzero=j(pp,p,0); 
 
 
do i=1 to pp; 
do j=1 to p; 
if rsp[i,j]>0 then nonzero[i,j]=1; 
end; 
 end; 
 
s=j(p,1,0); 
nr=j(p,1,0); 
rs=j(p,1,0); 
do i=1 to p; 
s[i]=sum(rsp[,i]); 

nr[i]=sum(nonzero[,i]); 
rs[i]=s[i]/nr[i]; 
end; 
hurst=rs||nmare; 
y=log(rs); 
x1=log(nmare); 
 
x0t=j(1,p,1); 
/* x0t is a row vector of ones */ 
x=(x0t//x1`)`; /* xt is the transposed 
design matrix for a simple linear 
regression */ 
b=inv(x`*x)*x`*y; /* b is a vector of 
estimated regression coefficients*/ 
hurst=b[2,1]; 
 create hurst from hurst;append from 
hurst; 
quit; 
 
  

 


