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Abstract. The aim of the paper is to demonstrate that some 

methods taken from the statistical thermodynamics may be applied in 
order to model several social phenomena for which, for the time 
being, we have qualitative descriptions only.  Some limitations and 
warnings related to the interdisciplinary transfer of concepts between 
physics and socioeconomic sciences are briefly analysed in the 
Introduction. In the second section we study the fear/rumour 
propagation process in the stock market space. The speculative 
bubbles are seen as non-equilibrium patterns resulted from the 
reaction-diffusion mechanism. In the third section we study the 
fashion fluctuations, seeing them as noise induced transitions in a 
system in which the interaction among individuals is described by 
means of the classical Ising-spin model. In spite of several 
unavoidable limitations, the models offer useful quantitative 
explanations to the phenomena and fit well the empirical data. 
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1. INTRODUCTION 
 
      Actually, sociologists seem not to show great interest in 
the sociophysics itself and thereby sometimes this activity is 
quoted with ironical comments, as “reinventing the wheel”. 
Nonetheless, more and more sociologists notice the activity of 
the physicists on social networks, and the new methods of 
solving some classical problems of sociology such as the small 
world problem, the information and contamination spreading 
in various networks, the preferential attachment, and so on. 
We note here that the leading authors in sociophysics, such as 
Serge Galam, Dietrich Stauffer, Janus Holyst and others 
published some of their early work in sociology journals. 
Also, they paid much attention to references to sociological 
and psychological literature. 
      If some agreement is possible between the sociologists and 
the physicists, it is probably about the need of a more intense 
exchange of information [1].  For example, many sociologists 
know about the physics of the networks, but they are less 
informed about the fact that many more methods of the 
statistical mechanics were succesfully applied in the study of 
the human collectivities. It would be worth mentioning here 
the self-organization in complex systems, the Ising-like 
models, and the quantum theory. Even if the results tend to be 
more in the form of general theorems and bonds than specific 
results for particular problems, they are attracting growing 
interest, especially for the new viewpoints they generate for 
old questions. 
      Some inherent difficulties of such an undertaking are 
pointed out in [2]. Modeling dependence in the social sciences 
has to take into account circumstances that differ substantially 
from those encountered in the natural sciences. Firstly, 
experimentation is usually not feasible and is replaced by 

survey research, implying that the explanatory variables 
cannot be manipulated and fixed by the researcher. Secondly, 
the number of possible explanatory variables is often quite 
large, unlike the small number of carefully chosen treatment 
variables frequently found in the natural sciences. 
     To begin with, let us analyse four basic concepts as taken 
from the statistical mechanics to describe social systems: 
spins, interaction, temperature and phase transition. 
 
a) Spins and opinions 
In social sciences the term opinion is not yet very precise. In 
sociophysics we represent opinions by spins. A spin is a 
variable assigned to an actor or agent. There is usually a large 
set of agents i, distributed in lattice sites or graph nodes; then, 
we have spin variable si. As a rule, in the sociophysical 
papers, spins can be of two values, +1 or 1, but the spin 
variable has been generalized to capture the situations when 
we have more than two opinions. The spectrum of possibilities 
is either discrete or continuous. In both cases we can also look 
for magnetic analogies; the respective models are the Potts 
model [4] and the classical Heisenberg model [3] reduced to 
one variable. Multidimensional approach was already used 
(see e.g. [5], [6]), and presumably will be used in many other 
papers. 
 
b) Interaction 
In physics, the only way for an object to exist is to have 
energy: a possibility of doing work. In social sciences, there is 
nothing like energy: no energy conservation, no energy 
measurement. In physics, the way to detect the interaction 
between objects is to observe correlations between their states. 
In this sense, physical interaction is detectable also in 
sociology. In sociology, one speaks about four levels of 
theoretical description of interpersonal interactions [1]. At the 
first level, the interaction is described as a chain of impulses 
and reactions. At the second level, interaction is undersood as 
social exchange. The above-mentioned concept of reciprocity 
applies correctly here. At the third level, meanings of 
interactions are as exchange of information by means of 
human contacts. At the last level of abstraction, we find the 
theory of social roles and labeling. In sociophysics, most of 
these subtleties are lost. Within the magnetic analogy, the 
interaction between partners is reduced to the energy of a 
mutual interaction. 
 
c) Temperature and noise 
In physics, temperature is inseparably connected with energy. 
In thermal equilibrium the probability of appearance of a 
given state depends on the ratio E/T, where E is the energy of 
this state. As noted above, there is no energy in social 
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sciences; then it seems that the temperature cannot be present 
there. However, there is also a more general view on 
temperature: we often refer to “social temperature” as a 
measure of the degree of randomness in agent decision-
making. 
 
d) Phase transition 
What a sociophysicist likes most to obtain is a phase 
transition. The reason is that he knows that social theories are 
qualitative. A change of phase, as for example a revolution or 
a paradigm shift, should be perceptible in a society even 
without measurements. 
      

For the social systems, the time series are often short and 
noisy. Most social data have a quarterly or at most monthly 
frequency. When social time series have been produced for a 
very long period, there is usually strong evidence against 
stationarity. It is all the more interesting to notice that at given 
times such series exhibit a behavior like that of the power 
laws. The interest in searching power laws in the description 
of complex, collective phenomena is caused by the fact that 
these power laws are universal, that is to a large degree 
independent of the microscopic details of the phenomenon. As 
such, they are typical features of a collective mechanism like 
the phase transitions: many observables behave as universal 
power laws in the vicinity of the transition point [3]. Also, the 
interest in power laws is related to an important property of 
power laws, namely scale invariance: the characteristic length 
scale of a physical system at its critical point is infinite, 
leading to self-similar, scale-free fluctuations. Long ago, 
physicists noted, in several contexts, the possibility of a 
„critical state”, in which independent microscopic fluctuations 
can propagate so as to give rise to instability on a macroscopic 
scale. This is a state in which chain reactions initiated by local 
disturbances neither damp out over a short distance (the 
“subcritical case”), nor propagate explosively so that the 
system cannot remain in that state (the “supercritical case”). 
Often this has seemed to depend upon parameters being 
carefully “tuned” to their exact critical values. 
      However, theories of phase transitions demand some 
ingredients which are impossible to occur in the social world. 
First is the so-called thermodynamic limit: the transition is 
well defined only in infinite systems [7]. In an infinite system 
there is always a finite probability that the phase will be 
changed due to fluctuations of some uncontrollable quantities. 
This is particularly true in social reality, where each system 
has its finite lifetime; from hours for an electoral meeting or 
years for a stategic alliance among countries, to centuries for 
an empire. For some models of relevance in the social sciences 
the system size plays an important role in the final outcome of 
the dynamics. Some changes of behaviour can appear when 
the number of agents in the model takes a finite value. Those 
changes of behaviour can be related to the apparent phase 
transitions that appear in some physical models. However, the 
effects can be meaningful in social sciences. 
      Here we must note another problem, connected with the 
previous one: the condition of equilibrium. In physics, the 
notion of equilibrium, although only intuitive, is well 
established. In a social system, equilibrium is never attained. 
Some correspondence to this difficulty exists also in statistical 
physics, for example in the theory of spin glasses. In such 
cases, one usually intends to assume that there are two kinds 
of processes: very quick, and those are over before an 
experiment started, and very slow, and those do not change. 

      Taking into account the above considerations we can 
conclude that sociophysics will never substitute sociology. 
What econophysicists and sociphysicists can do best is to give 
quantitative “clothes” to some rather qualitative conceps from 
social sciences, but, of course, these clothes may be too tight 
or too loose. The test of validity of the model apropriateness is 
always the agreement with the empirical data and the ability of 
leading to correct predictions. In the next sections we will try 
to model some qualitative phenomena such as fear/rumour 
propagation and fashion fluctuations by means of some 
methods taken from statistical thermodinamics, namely the 
reaction-diffusion mechanism (Section 2), Ising-spin models 
and noise induced phase transitions (Section 3). Some 
concluding remarks are drawn out in the last section. 
 
2. FEAR AND RUMOURS: NON-EQUILIBRIUM 
PATTERNS IN THE STOCK MARKET SPACE 
 
2.1 The concept of rumour 
      The subject of rumour formation is getting strategic 
importance at all levels of society. Control and possible 
handling intended to manipulate information are now major 
issues in social organizations including economy, politics, 
defense, fashion, and even personal affairs. Especially with the 
existence of Internet, which provides a support to anybody to 
say anything, and then consequently to be possibly heard by 
millions of people. To be read can imply to be automatically 
perceived like truth, and retransmitted as such to others.  
      However, information shared by a very great number of 
people does not obviously prove its authenticity by anything. 
Still, it can induce quite concrete and sometimes dangerous 
follow up acts. It may also happen that once a point of view on 
some specific issue has been widely adopted, the presentation 
of objective facts proving its falseness, does not produce the 
abandonment of this same false point of view. By contrast, a 
rumour can prove to be true while at first set, false by official 
media. The frontier between a rumour and information turns 
out to be very fragile.  
      An interesting analysis of rumour formation may be found 
in one of S. Galam’s papers [8] in relation to the astonishing 
wide adhesion of French people to the rumour claiming “No 
plane did crash on the Pentagon on September the 11”. In this 
paper a generic explanation is given, in terms of a model of 
minority opinion spreading. Using a majority rule reaction-
diffusion dynamics, a rumour is shown to invade for sure a 
social group provided it fulfills simultaneously two criteria. 
First, it must be initiated with a support beyond some critical 
threshold which, however, turns out to be always very low. 
Then it has to be consistent with some large collective social 
paradigms of the group. 
      The dynamics of the rumour processes that take place both 
in small-world networks and in complex heterogeneous 
networks has been intensively studied in the literature of the 
last fifteen years (see some starting points in [9] and [10]). It 
was demonstrated that the propagation of a rumour on a 
network exhibits critical behaviour at a finite randomness of 
the underlying graph. The transition occurs between a regime 
where the rumor “dies” in a small neighborhood of its origin, 
and a regime where it spreads over a finite fraction of the 
whole population.    
      Now let us have a look at how markets and securities may 
react to news and rumors. Fortunes change fast in the stock 
market – so, it is critical for investors to stay abreast of 
investment news in addition to stock quotes and charts. As we 
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saw in the fall of 2008, financial services stocks were 
hammered, sometimes on the basis of market news alone [11]. 
There are arguably no better examples of how investment 
news can impact stock prices than the recent crisis in financial 
services stocks. Here are a few examples: On September 11, 
2008 Lehman Brothers (LEH) announced it was actively 
seeking a buyer. Right after the announcement, its shares 
plummeted 45%. What happened in fact? Lehman’s 
announcement made it clear they were having troubles finding 
a suitor. Having to advertise your willingness to be bought is 
not usually considered a bullyish signal. True to expectations, 
on September 15 Lehman filed for bankruptcy, the largest 
bankruptcy in U.S. history. 
      In the same week, insurer American International Group 
(AIG) began admitting that its balance sheets were similarly 
threatened by the subprime mortgage crisis. Between 
September 10 and September 16, when the government 
announced a feverishly constructed rescue plan for the insurer, 
AIG’s stock plunged about 80%. 
      You can see the rise and fall of hope versus fear in XLF, 
the Exchange-Traded Fund (ETF) tracking the financial 
services industry. After the U.S. government made an 
announcement on its bailout package, the ETF bounced up and 
down accordingly. When the first bailout package was rejected 
by Congress in late September, the bad news meant bad news 
for stock prices in the financial sector, too – the XLF dropped 
almost half its value as investors waited impatiently for the 
verdict from Congress. When a revised bailout package finally 
passed, the market news perked up as well, stabilizing XLF. 
      A curious fact – and one that is crucial to understanding 
stock prices – is that good news does not always translate to a 
jump in stock price; in fact, often the good news will produce 
a slight drop in a stock price. That happens because unofficial 
news, also known as “rumors”, can have as much impact on 
stock prices as official news announcements. The stock market 
often anticipates these news stories and “prices in” its 
expectations accordingly. When those expectations are 
confirmed with actual investment news, the price may 
temporarily drop. Of course, the reverse applies, too: if rumors 
swirling around a stock are not proven true, investors may 
respond in surprising ways. If the surprise is a good one, stock 
prices can be driven upward as a result. That is why it is key to 
watch the investment news online and see how headlines 
influence stock quotes. 
 
2.2 Reaction-diffusion processes in the stock market space 
Here we propose macroscopic modelling of the formation of 
patterns (or “dissipative structures”) in the one-dimensional 
space of the prices on the interdealer broker markets). In the 
framework of the chemical model which we develop, the 
stocks of the shareholders A and B will be called  and  
respectively, and have the role of the chemical concentrations. 
We call   the spectral density of the intermediated 
transactions (i.e. the number of the transactions per unit of 
price). The quantity  has here the significance of the 
concentration of the intermediate product X. With these 
notations, the financial brokerage mechanism can be writing 
formally: 
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The mechanism described by (1) allows us to use a 
phenomenological approach ([12]). 

      We focus on the dependence of  of the bid-offer spread 
(we use here this notion as it has been defined in [13]). The 
bid-offer spread is done as: 
   y   = (offer price) – (bid price). 
In order to clarify some quantities that we use, it is worth to 
have in mind the one-dimensional representation: 

 
Making a suitable change of the variables, we can set the 
extreme values of the spread symmetrical with respect to the 
origin of the prices axis:  
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The spectral density of the transactions will satisfy the 
Dirichlet boundary conditions: 
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The financial brokerage between A and B unfolds in 
accordance with the mechanism described through Eq. (l) only 
if the spread is framed by certain limits related to:  
   Best Spread ( Cy2 ) = (Best Offer)  (Best Bid), that is: 

CC yyy  ,                                                     (4) 
where LC yy  .   

For:  CL yyy   and  LC yyy  , the spectral density of 

transactions becomes less than a critical value C , involving 
the reduction of the brokerage mechanism to the form [14]: 
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This mechanism reflects the fact that when the spectral density 
of transactions decreases (which implies, in financial 
language, a higher “volatility” of prices), the shareholders 
retire their assets from respective market. 
      According to the chemical reactions theory, taking into 
account both the first and the second mechanism, the deal rate 
will be: 
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where   is the step Heaviside  function. 
      This picture has become very useful in the description of 
pattern formation and propagation in the active (excitable) 
media. A distributed active medium can be viewed as a set of 
active elements, the traders, each element being a system with 
two or more possible steady states (e.g., selling 
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/buying/waiting), representing small parts of a continuous 
system, interacting among each other through trading. We 
assume that the interactions between the different elements 
that compose the active medium are local in time and also that 
the variation in space is not too extreme. This implies that we 
can neglect the memory effects, as well as the space 
derivatives of order higher than two. Within the formalism of 
the reaction-diffusion model the general form of the 
macroscopic equation for the case of only one relevant 
macroscopic variable   will then be: 
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Expanding this in terms of the spatial derivatives, taking into 
account that the medium is isotropic and neglecting higher 
order derivatives, the equation reduces to:  
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The first term on the r.h.s. of the Eq. (7) describes the 
behaviour within each cell corresponding to one of the active 
elements (usually called “the reactive part”), while the second 
corresponds to the interaction of the different cells with each 
other. 
      The development of the model follows the canonical 
procedure. First a suitable reference state S  which is an exact 
solution of the Eq. (7) is identified. The choice of S  is 
motivated by physical arguments. Typically S  is a state 
describing the “simplest” behaviour observed in the system – a 
quiet market, without crashes or large price variations. Within 
the same paragraph the stability of S  is tested against 
perturbations. The next paragraph includes a model describing 
the propagation of pattern in one-dimensional systems and a 
method for the experimental testing of the model. 
 
2.3 Pattern Formation. The Stability of Steady-State Solutions 
   The first step is to look for stationary solutions, which are to 
consider 0
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(For simplicity, we will drop the index of S  where no 
confusion is possible). 
For the one-dimensional problem considered, the reactive term 
(or the “force”  F  can always be derived from a potential 
 V , according to:                                                            
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Taking into account Eq. (6), the stationary equation for our 
model will be: 
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   To find the form of the stationary solutions, one may 
distinguish two different regions: 
1) The regions of “cold” deals (non-speculative transactions), 
where   Cy    , and Eq. (10) reduces to:                                                                                                   
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with solutions having the general form:  
     yByAy CC  expexp ; 

2)  The regions of “hot” deals (speculative transactions), 
where   Cy   , and Eq.(10) becomes: 
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with general solutions of the form:  
      hhh yByAy   expexp . 

Imposing the Dirichlet boundary conditions (3), we get the 
analytical steady-state solution: 
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Note the possibility of existence of two solutions, which are 
two possible roots 

Cy  depending on the value of Z. 
We can now analyse the stability of the structures that we have 
found, adding to S a small perturbation: 
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Substituting this into Eq. (10) and linearizing in  ty, , we 
obtain:                                                                                      
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The term within the large parentheses is zero, as it must be 
from the stationary condition, reducing Eq. (16) to an equation 
for ),( ty . The parameter K arises from the discontinuities 
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(due to the presence of the step  y  function) at  

Cj yy  ,  
and is given by: 
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We further propose: 
     tyty   exp, 0  ,                                    (18a) 

leading in each region to solutions of the form:                    
     ybyay   expexp0  .                        (18b) 

Replacing Eqs.(18) into the equation for  y , we find: 
21   .                                                            (19) 

The coefficients a and b from (18b) depend on the region 
and they are determined through the same boundary 
conditions as for the stationary solutions (13). Without loss of 
generality, we can choose 1Ly  ;  
The form of the perturbation (for y > 0) will be: 
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There are many ways to study the connection between the 

eigenvalue  and the value of Cy . The simplest is by imposing 
the natural requirement:    000 S   which leads to:   
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At the limit 1Cy , the inequality is fulfilled when 1  
(i.e. 0 ), indicating that the corresponding stationary 
solution (with the larger dissipation) is stable. For small values 
of Cy  (at the limit 0Cy ) we find     000 S  . The 
corresponding solution (with the sign “-”in Eq.(14)) is 
unstable. 

 
2.4 Some Extensions: Pattern Propagation 
An important property of the patterns is the space-time 
propagation described by the solution of Eq.(7) in its complete 
form. Some results can be obtained taking over a particular 
kind of solutions such as the solitary waves ([3]). We will give 
further a briefly discussion about the theoretical approach of 
the phenomenon. 
      The solitary waves are functions of the spatial (y) and 
temporal (t) coordinates, not independently, but through the 
combination: 
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In terms of the new variable  , Eq. (6) adopts the form: 
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      Let us concentrate on the situation where the potential 

)(V has a bistable form as it is given by Eq. (11), and solve 
Eq. (22) with the boundary conditions: 
   ,0  for                                        (23a) 
   h  ,  for                                        (23b) 

The resulting wave, or moving pattern, is called a trigger wave 
(or front), because its propagation triggers the transition from 
one stationary state of the system (say 0 ) to the other (say 

h  ). This kind of waves has been observed, for instance, 
in chemically reacting media or as electrical activity that 
propagates along the axonal membrane [12]. There is a point 

C  , at which   CC   . Due to translation symmetry, we 
can choose, without loss of generality, 0C . The form of 
the solutions is: 
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The propagation velocity  c  can be related  to:  
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The correspondence between the two quantities is based on 
the interpretation of Eq. (22) as the movement equation of a 
particle in the force field )(F  derived from the potential 

)(V ; In such an analogy   is the spatial coordinate and c 
plays the role of the friction coefficient. The sign of V  is 
related to the sense of movement on the axis (Figure 1). For 

,0V  ( Ch  2 ), the velocity is zero, and there is no 
propagation. 
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(b) 

FIGURE 1 a) A plane representation of the patterns (“speculative 
bubbles”) in the 1-dimensional space of stock market prices. The 
curves represent the spectral density of transaction (number of 
transaction per unit of price) f, plotted depending on the bid-offer 
spread y, in accordance with Eq. (13), for different trading days [14]. 
b)  A spatial representation of the patterns. One can see the time 
propagation. 
 
      Finally, the model developed in this section describes the 
stock market speculative bubbles as thermodynamic 
instabilities and treats them in the reaction-diffusion 
formalism. Although any essay of this kind is to a certain 
extent speculative, it could provide an alternative way to 
explore some complex economic phenomena, leading to the 
possibility of some predictions, which are potentially useful 
for the practitioners in the financial field. 
      In order to shed more light on the mechanisms described 
by Eq. (1) and Eq. (5), let us consider the following situation: 
the investor A needs money to extend his business and offers 
shares (stocks), while the investor B wants to invest money 
profitably. The both will appeal to the stock market, where 
their transaction will be intermediated by the broker X. The 
difference between the selling price (offer) and the buying 
price (bid) is the broker’s premium usually called bid-offer 
spread, y. This is the general framework modelled by Eq. (1). 
Note that to a large extent our model is “minimal”: in the real 
stock markets there are many brokers (or brokerage firms) and 
a huge number of stocks is traded each moment so that, at 
least for y and  , a statistical description is more adequately. 
In our thermodynamic framework, we take for granted this 
aspect. When the number of transactions becomes small, the 
market is – in financial terms – without liquidity. For a while 
the broker will pay his own money to A and will sell to B 
shares from his own stock. Essentially, this is the meaning of 
the mechanism described by Eq. (5). Our model associates 
with such situations critical values of density,  c, and bid-
offer spread, yc. 
      A speculative bubble occurs when, as a reaction to various 
rumours, the large majority of certain stocks are bought in 
order to be resold later on, exceeding to a large extent their 
underlying value. The famous economist John Maynard 
Keynes used “the beauty contest” as a parable describing such 
situations: In order to predict the winner of a beauty contest, 
objective beauty is not much important, but knowledge or 
prediction of others’ predictions of beauty is much more 
relevant. Speculative bubbles disappear gradually or collapse 
unexpectedly generating financial crashes. 
 
3. MODELLING FASHION: SPIN MODELS AND PHASE 
TRANSITION  
 
3.1 The concept of fashion 

“Fashions have changed”, “in fashion”, “old-fashioned” are 
phrases frequently used in the street, on TV or in newspapers. 
But what fashion are we talking about? The fashion of ideas, 
artistic fashion or, more prosaically, dress fashion? When we 
talk about fashion, do we consider it to be the result of a 
creative process (either intellectual or industrial), or a method 
of communicating a certain “way of life” which would 
correspond in economics to the level of information? The 
simplest way to understand the fashion is postulated in early 
sociophysics literature [15]: every time a new outlet appears 
on the market, it can, under certain specific conditions, invade 
the market. Each creator competes for a finite population of 
agents. Hence, the “old” outlet can be completely dominated 
and disappears.  

   The word fashion (or mode) originates in the Latin word 
modus. Modus means the non-existing limit. Its equivalent in 
the English language is fashion and means “method, form, 
style, mode; behavior, lifestyle of the gentle class, and upper 
class”. In Romania, moda first came into use once with 
Westernization, and developed mostly under the influence of 
French culture. The reason for this was, partly, the dominance 
of French culture in the social and governmental life of the 
Ottomans. 

It is possible to divide fashion in the sense of temporary 
novelty in the social life into three groups [16]: 

1- The temporary novelty with the need for a change and 
fancy in beautification, e.g. mini-skirt fashion 

2- The social favor for a certain period of time, over 
keenness for an object 

3- Objects fitting to the novelty and social favor 
temporarily, like the hat fashion. 

As seen from the items above, fashion can change forms, as 
in item 1, or disappear, as in item 3. 

Or else, fashion that that disappeared can be fashionable 
again after a certain period of time. 

   The general meaning of fashion is determined by the two 
antonyms, namely, the fashionable and the unfashionable. 
These terms indicate that some of the changes in social forms 
are more accepted and considered more as compared to others. 

   The word fashion recalls clothing in the first place. 
However, philosophy, art, music, house decoration and many 
social sciences also constitute components of fashion. Every 
changing area of the social life is open to the interest of 
fashion ([17]).  

   The common statement in the definitions of marketing 
developed by scientists is the “development of ideas of 
manufacture, and the production, pricing, adhering and 
distribution of the manufacture”. Which manufacture(s) must 
be produced? In what quantity and for which consumer mass 
must it be produced? 

Answers to these questions and the results of the 
investigations on other marketing components can help for 
making the required decisions. As is known, manufacture with 
a certain physical structure and servicing that is not 
manufacture have equal importance as regards the satisfaction 
of human needs. 

   FASHION, which plays and important role in the 
decisions of marketing, consists in product(s) (services) that 
the majority of consumers in the target market adopt the 
buying behaviour for reasons of prestige, personal satisfaction, 
gaining status, or similar reasons. Here, social psychology 
plays an important role rather than individuality, and if the 
fashionable products in the market are accepted as FASHION 
by the group of consumers in numbers exceeding the average, 
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others also follow the majority they accept as a reference 
standard [18]. 
      When handling the concept of fashion as regards the 
marketing above, “fashion” can be created also in the other 
layers of the society following the opinion leaders along the 
axis of novelty. 
      The word “fashion” generally calls to mind clothing, in the 
first place, and it is the “woman” who uses fashion in the most 
efficient way possible. Therefore, wise operations develop 
their marketing strategies to create fashionable products to 
ensure profit maximization within a short time, because these 
products have the highest selling potential as long as they 
remain in the market. 
      The history of fashion starts with the history of humanity 
and continues with the transformation of dressing to a fact of 
being accepted beyond the need. Individuals have reflected the 
characteristics of the society they belong to, their personalities 
and lifestyles in their clothing. Very important changes in the 
area of fashion happened especially with the advent of the 
Industrial Revolution. Serious increases in the trade of 
clothing were seen in the late 1870s after the invention of the 
sewing machine in 1825 and the invention of the first 
synthetic dye in 1856. This became widespread throughout the 
world in the 1870s and serious increases were observed in the 
trade of clothing, and the prices of the clothes fell. [19] 
      Fashion pages in newspapers started to be common in 
1850s, and the foundations of the expensive ‘haute couture’ 
made for the upper classes were established by the English 
fashion designer Charles Frederick Worth. Worth opened the 
first fashion house in Paris in 1857 and therefore the 
understanding of the nameless concept, which was women 
having their dresses designed by tailors, left its place to the 
understanding of presenting the fashion designers new 
collections for each season. With Worth, a “Fashion System” 
in the modern sense was established that was affordable for 
most people. The production of clothing for the elite that 
started in the workshops of Worth became to spread in many 
European cities [20]. Starting from the year 1871, paper dress 
patterns prepared by Ellen Butterick provided great ease for 
sewing. Following this, sewing the shoes also with sewing 
machine and mass production was started. Consumption of 
ready-made clothing started thus. 
      Liberalization seen in the world in recent years and 
particularly the collapse of the USSR and the free market 
economy has enlarged the alternative markets in the 
international markets and the operations entered a ruthless 
competition with domestic and foreign competitors in their 
own markets and in foreign markets. Following this, the global 
markets and global competition were introduced. The 
economic changes appearing as a result of political changes 
and particularly the stunning developments in information 
technologies have revealed the need for radical changes in all 
the functions and the understanding of management of 
operations. 
      Very much as in the movie industry or the industry of 
industrial design, fashion activity depends on the level of 
creativity of the designers. It also depends on the level of 
public recognition of this creativity. Nike certainly shares this 
assumption, paying Michael Jordan, the famous US basketball 
player, a stunning 20 million dollars in 1992, for endorsing 
Nike running shoes.  
      Fashion improves neither efficiency nor the marginal 
utility of the consumption. Clothes belong to a class of goods 
whose functional properties are fundamental in their 

consumption. It is easy to understand why I need to buy a 
dress, or a pair of jeans. It is harder to explain why I choose 
Adidas shoes, or Levi’s jeans. Moreover, it seems very 
difficult for an economist to explain why women ask for short 
skirts one year, long skirts the year after, and then short skirts 
again the year after that. Some theoricians may talk of erratic 
preferences, but the desire to be in fashion could justify 
Janssen and Jager’s argument [21] that “...in satisfying their 
need for identity, people may change their behaviour without 
changing their preferences”. 

 
3.2 The Ising-spins modelling 
Firstly, let us review some basic features of the phase 
transitions. The processes of boiling-condensation, melting-
freezing, and congelation-sublimation involve changes in 
entropy (S) and volume (V). According to Ehrenfest, such 
transitions are classed as changes of phase of the first kind (or 
the first order): whereas the Gibbs function remains constant 
during a change of phase, its first derivatives S and V change 
abruptly. A distinction of a phase change of the first kind is 
that the new phase is formed gradually: The fraction of the 
new phase gradually increases as more of the latent heat of the 
respective phase change is put into or withdrawn out of the 
system. 

   There exist phase changes of higher orders, in which S 
and V retain their values constant during a phase change. In 
the process T (temperature), p (pressure) and E (internal 
energy) likewise remain unchanged. If, during a phase change, 
c (the specific heat) and the other caloric coefficients are 
incremented or decremented by a finite amount, such phase 
transitions are called transitions of the second  kind (or of the 
second order) because each of these quantities can be defined 
as a second derivative of the Gibbs function. An example is 
the transition from the state of superconductivity to the normal 
state in the absence of a magnetic field. 

   An example of a higher order phase change is the lambda 
phase change, so called because the c = f(T) curve looks like 
the Greek letter “lambda” (Figure 1). Examples of the lambda 
phase change are the transition from the ferromagnetic to the 
paramagnetic state or from He I (the ordinary, viscous state of 
helium) to He II (a peculiar state called superfluid). The 
lambda transition proceeds without an abrupt change in 
density (the density curve has a quiet peak around the λ-point), 
without evolution or absorption of latent heat, and is 
accompanied by a sudden change in specific heat ([22]). 
      As has been shown in econophysics literature, there are 
many similarities between the physical complex systems and 
the collective behaviour of various groups of individuals. We 
may ask now about the key to these similarities. Our Ariadne’s 
thread is that complex systems often reveal more of their 
structure and organization in highly stressed situations than in 
equilibrium. This point of view is influenced by the concept of 
criticality developed in statistical physics in the last four 
decades in order to describe a class of cooperative phenomena, 
such as magnetism and melting, and our hypothesis is that the 
group of individuals behaves as a many-body system driven 
out-of-equilibrium. In the next subsection we would like to 
defend the thesis that the crashes of some market shares have 
fundamentally similar origins, which must be found in the 
collective organization of the individuals leading to a regime 
known as a “critical” point. 
      As we have claimed in the previous subsection, a new 
fashion arises when a large group of individuals decide 
simultaneously to buy a certain product instead another one. 
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One curious fact is that the agents in this group typically do 
not know each other. They did not convene a meeting and 
decide to reject the old-fashioned product. Nor do they take 
orders from a leader.  In fact, most of the time, these agents 
disagree with one another. The key question is: by what 
mechanism did they suddenly manage to organize a 
coordinated buy-off? 
      As in Ref. [22], we propose the following answer: all the 
individuals in the world are organized into a network (of 
family, friends, colleagues, etc.) and they influence each other 
locally through this network. Each of them is directly 
connected with γ nearest neighbours, and there are only two 
forces that influence his opinion:  
(a)  the opinions of these γ people;  
(b) an idiosyncratic signal that he alone receives.  
      Our working assumption is that agents tend to imitate the 
opinions of their nearest neighbors, not contradict them. 
Clearly, the force (a) will tend to create order, while force (b) 
will tend to create disorder. The main story that we are telling 
on is the fight between order and disorder. As far as asset 
prices are concerned, a crash happens when order wins (every 
agent has the same opinion: selling), and normal times are 
when disorder wins (buyers and selling disagree with each 
other and roughly balance each other out). This is exactly the 
opposite of the popular characterization of crashes as time of 
chaos. 
      In our microscopic modelling we consider the traders 
network as an arrangement of N fixed points forming a n-
dimensional periodic lattice (n = 1, 2, 3). At each site of this 
lattice is attached a number Si , (i = 1,…,N), taking only two 
values: Si = +1 (the spin “up”; selling option) and Si = -1 (the 
spin “down”; buying option). A set of numbers {Si} specifies a 
configuration of the whole system. The energy corresponding 
to this configuration, in absence of external fields, is : 


}{ij

jiiji SSE 
              

where {ij} appoints a pair of nearest spins and ij  is their 
interaction energy. Because {ij} and {ji} are not distinct, the 
sum will have 2/N  terms, with   being the number of 
nearest neighbours of a given spin. 
      Although the configuration of the system depends on N 
numbers, when we consider const.  ij , the energy of a 
given state depends only on two numbers : the long-range 
order parameter L and the short-range order parameter : 
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The parameters L and  can be computed in the framework of 
various approximations of the initial (Ising) model. We 
suggest here the Bethe–Peierls (or “quasi-chemical”) 
approximation.  
      Let us consider the n-dimensional periodic lattice 
mentioned in the subsection 2.2 and its corresponding energy:  
 

 
ji

ij
iji SSESE                                              (27)                                      

where Si =  1, i = 1,…, N. We have already established that 
the sum have 2/N  . In a given configuration {Si} we call: 
N+ = the total number of spins “up”; 
N- = the total number of spins “down”. 
      Each pair of spins from the sum belong to on of the kinds: 
(++), (- -), (+ -), the last being no distinct from (- +). The 
corresponding number of pair will be N++, N--, N+- . These 
numbers are not independent. The relations between them can 
be established as follows: 

a) we link by lines a spin “up” with its nearest neighbours. 
Repeating for all the spin “up” we obtain γN+ lines. 
b) the number of double lines will be N++ and the number of 
simple lines, N+- . Therefore  
γN+ = 2N++ + N+- 
c) interchanging the indices “+” and”–”we have :              
γN- = 2N-- + N+- 
 
The equations: 

γN+=2N++ + N+- 
γN-=2N-- + N+-                                                   (28) 
N+ + N- = N 

 
have the solutions: 
 N- = N – N+                                

 N+- = γN+ – 2N++                                  (29) 
 N-- = (γ/2)N + N++ – γN+ 

 
so we can write: 

 
NNNNNNSS j

ij
i 2

24 
     (30) 

               
      Note that although the system configuration depends on N 
numbers, the energy of a given state depends only on two 
numbers: N+ and N++ (We can consider εij = ε = constant). The 
number N+ /N measures  the “long range” order, while  the 
number N++ / (γN/2) measures the “short range” order. The 
raison for this terminology is the following: having given a 
random distribution of spins and knowing that a certain spin is 
“up”, the number N++/(γN/2) is the fraction of nearest 
neighbours having the spin “up”, thus involving a local 
correlation between spins: the other number, N+/N, does not 
imply correlations between the nearest neighbors, but 
represents the fraction of spins  from all the lattice having the 
orientation “up”. We define the long-range order parameter L 
and the short-range order parameter σ through the relations: 
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Replacing into Eq.(4), we get: 
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and the energy per spin, from Eq.(1), becomes: 
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      Now, let us call P(s, n) the probability of n nearest 
neighbours to have the spin “up”, if the central spin is “s”. 
Thus, P(+1, n) refers   to the  configurations containing n pairs 
(++) and  (γ  n) pairs (+ -); P(-1, n) refers to the 
configurations with n pairs (+ -)  and  (γ  n)  pairs (- -). For n 
given, there are nC  manners to choose the n spins from the γ 
nearest neighbors. We suppose that: 

     nn znC
q

nP   2exp1,1                           (34)      

     nn znC
q

nP 2exp1.1  
                            (35) 

where β=1/kT (k = Boltzmann`s constant; T= temperature), 
q is a normalization constant and z is a parameter 
characterizing the n spins sublattice. Imposing the 
normalization of the probability: 
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we obtain : 
     expexp zq   

          expexp z                              (37) 
Taking into account the signification of P(+1, n) we get: 
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      The last equations express L and σ in the terms of the only 
variable z, which can be computed by solving (graphically) a 
transcendental equation. Then, Eqs. (12) and (13) give us L 
and σ and Eqs.(7) leads to the internal energy, E. The specific 
heat (the derivative of E), for T > Tc is given by: 
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We found that the specific heat (the derivative of E) exhibits a 
jump (Figure 3) at: 
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FIGURE 3.  The specific heat of liquid 4He as a function of 
temperature T at the pressure P = 0.227 MPa. The region of liquid 
states for 4He is divided by Tc  2.2K into two sub-regions: ordinary 
(viscous) helium or He I (on the right) and superfluid helium or He II 
(on the left) ([23]) 
 
 

 
 
FIGURE 4. New passenger car registrations in November in EU. 
Source: [24] 
 

 
 
FIGURE 5. Change in industrial production and car sales: (a) US; (b) 
UK; (c) Japan; (d) Euro Zone; (e) Germany; (f) France; (g) Italy; (h) 
Spain. The United States reported a 2.2 percent rise in industrial 
production in 2012, pushing the rate past the 2006 average for the 
first time since the downturn began in late 2007. Production has also 
exceeded the 2006 level in Germany, although it began to slip in late 
2012, but other major developed countries are still below that level. 
Car sales have recovered to some extent in the United States and 
Japan, but are still falling in much of Europe. Source: [25] 
 

 
 
FIGURE 6. Market share for US smartphone sales. 
Source: [26]  
 
      There are some remarkable similarities between the shape 
of curves plotted in Figure 3 (the experimental result for a 
particular phase transition), and, on the other side, Figures 4-6 
(the marketing data). 
3.2 Noise-Induced Transitions between Non-Equilibrium 
Steady States 
      Physicists have noted, in several contexts, the possibility 
of a “critical state”, in which independent microscopic 
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fluctuations can propagate so as to give rise to instability on a 
macroscopic scale. This a state in which chain reactions 
initiated by local disturbances neither damp out over a short 
distance (the “subcritical” case) nor propagate  explosively, so 
that the system cannot remain in that state (the “supercritical” 
case). In this section we propose studying the role of the 
fluctuations in the neighbourhood of the critical points that 
seem to appear at the end of an economic cycle [27]. 
      Let us consider, for the sake of simplicity, a single 
production process P, which produces a flux y of a certain 
commodity C. In the simplest form, the rate of increasing of 
the net product flux depends on the actual flux: 
dy / dt = ky                                                           (42) 
Eq. (42) allows for either an exponentially growing or 
decaying of the net product flux because it does not take into 
account some marginally effects such as market saturation: as 
more quantities of C enter the market, the offer increases so 
the price decreases, which in turn influences dy/dt. It is so 
more naturally to consider k as a function on y: 
k =    y  
Here, the second term includes the competition effect and is 
similar to the “struggle for life” term in the Malthus-Verhulst 
model of population dynamics. 
      

 Substituting in (42) and re-scaling, we obtain the nonlinear 
differential equation (NLDE) of the process in the canonical 
form: 
 

qqdtdq  2/                                                (43) 
    
According to the stability theory, for  < 0, Eq. (43) has 

only one stationary solution 00 q , which is stable. At  = 0 a 
transcritical bifurcation appears (Figure 7): the solution 00 q  
becomes unstable and a new stable steady state branch arises, 
with 0q . The qualitative change suffered by the system 
when it goes through the bifurcation point is similar to a 
thermodynamic phase transition. According to the bifurcations 
theory terminology this is a “soft” transition. 
   The parameter  is supposed to be subject to fluctuations, 
being a Gaussian white noise with mean 0  and variance σ. 
The stochastic differential equation (SDE) associated to Eq. 
(7.2) is: 
 

qdWdtqqdq   )( 2                                  (44) 
or: 

dWqgdtqfdq )()(   
where W is a stochastic Wiener process. (For simplicity we 
have dropped the index of ζ.). 
      In the same way as in the deterministic case, we compute 
the stationary solutions of the Eq. (44), i.e. the stationary 
points of the SDE, imposing:   
f(q) = g(q) = 0.  
 

One such point is q = 0 signifying that the ceasing of 
production (the collapse or the bankruptcy) is always possible 
for a system described by such equation. 

 
FIGURE 7. The transcritical bifurcation of the solutions in Eq. (43) 
 
      The question that naturally arises is whether, in addition to 
the stationary point q = 0, the SDE (44) has another stationary 
solution. The simplest way of solving this problem is 
analysing the Fokker-Planck equation (FPE) associated to 
SDE: 
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The stationary solution of this equation has special interest: 
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where Pst (q) will be considered a probability density if and 
only if it is normalizable, i.e. its integral over the range [0, ∞) 
is finite. The stationary solution of the FPE, having the form: 

)/2exp(~)( 22/2 2

 qqqPst   
is found to be integrable over [0, ∞) only if 2/2  . 

With other words, the stationary probability distribution exists 
only if 2/2  . 
After normalization we get: 
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      A remarkable aspect of the result is the drastic change in 
the character of the stationary distribution for 2  : if 

22 2/   , Pst(q) is divergent for q = 0, while for 
2  , Pst (q = 0 ) = 0. 

      Summarizing the previous sections and taking into account 
also the influence of the external noise, the following 
behaviours of the system are to be predicted: 

   a) For  < 0, the stationary point 00 q  is stable, making 
up the thermodynamic branch of evolution, on which the 
fluctuations are damped and do not lead to structural changes 
into the system. This feature can be extended for 20    
(the domain of small fluctuations) where we have a new stable 
solution 0q  after the crossing through the transcritical 
bifurcation at 0 . 

   b) The critical value 2/2   can be considered a 
threshold over that the stationary probability distribution Pst(q) 
arises. For 22 2/   , Pst(q) is divergent for q = 0 . Even 
if the solution q = 0 is no more stable, it remains the most 
probable. For 2  a new change occurs in the aspect of Pst 

(q), and the value 2   becomes a transition point produced 
only by the external noise (In concordance with the usual 
classifications this is a “hard” transition).  

q
0 
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   We consider that second kind of transition is related to the 
shift of the economic system between two non-equilibrium 
steady states. As the phenomenon is induced by random 
fluctuations, the outcome is indeterminate; it is not unique and 
predictable. Nonetheless, it is reasonable the assumption that 
the distribution of transitions depends on the distribution of 
fluctuations. This relation could explain the empirical 
fluctuations reported in the marketing pages of various 
journals [24-26]. 
 
4. SOME CONCLUDING REMARKS 
 
In this paper we analysed some interesting social phenomena 
such as fear/rumour effects and fashion fluctuations. These 
phenomena were intensively studied over the last few years 
using small-world network theory and simulations. Here we 
proposed an alternative way of modelling, using methods 
taken from statistical thermodynamics.  
      In the introductory section, we analysed some inherent 
difficulties related to the transfer of the conceps from physics 
to sociology. A subtitle of this section could be “What should 
we know before to reject the application of thermodynamics in 
social sciences?”. Or to accept it – whichever you like. 
      In the second section, we considered the formation of the 
speculative bubbles in the stock market as an effect of 
rumours propagation. Using a phenomenological approach, we 
described the formation and the propagation of the patterns (or 
“dissipative structures”) in the stock market, the spatial 
coordinate being the bid-offer spread y, as a function of which 
the spectrum  of deals is modelled. The stock market was 
considered a distributed active medium that is a set of active 
elements (the brokers) interacting with others through deals 
(typically, a diffusion process). The physical model used is the 
reaction-diffusion model. The reactive part of the reaction-
diffusion equation is developed from a hot-spot mechanism, 
with a characteristic jump when  passes the critical value c. 
Solving the stationary equation according to the Dirichlet 
boundary conditions, we found the “hot deals” regions, 
meaning regions of speculative transactions.  
      The nonlinear modelling touched in the third section offers 
strong tools to investigate both the individual and the global 
socio-economic complex systems. Nevertheless, it is worth to 
mention that this approach appears often as a “black box” 
which leads to a “convenient” set of outputs for a well-tuned 
set of inputs. The underground economic meanings of the 
control parameters and, in principal, the economic relevance 
of the non-linear equations fitting the empirical dataset, 
remain open questions for future studies. 
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